
www.dspace.com

Safely Excluding Serious Errors

Translation of “Schwere Fehler sicher ausschließen”

Published at: Elektronik Automotive 03/2014

Elektronik Automotive 03/20142

In a model-based development
process, the software is developed
graphically at a high level of abstraction,
usually by state machines and data flow
charts. Thus, the executable model is
also the system software specification.
Code generators automatically generate
the implementation from the abstract
model, usually as C code. Two of the
advantages are that developers can
concentrate on the actual functionality
without having to concern themselves
with implementation details, and that
model changes automatically lead
to corresponding code changes. This
contributes not only to a reduction in
development effort, but also to an im-
provement in system safety.

The high degree of abstraction also
has disadvantages, however: Some
important system properties are no
longer directly visible to the user. These
include the occurrence of run-time
errors in the generated C code due
to erroneous model specifications,
the stack consumption of the gener-
ated machine code, and the timing

behavior of the machine code on
the embedded target processor.
This can result in serious errors not
being discovered until later develop-
ment phases. Violations of real-time
requirements, stack overflows and
run-time errors can result in incor-
rect system responses and even
a complete system crash. Proving
that these so-called nonfunctional
errors cannot occur is one of the
verification objectives of all current
safety standards such as ISO 26262,
DO-178B / DO-178C and IEC 61508.

Nonfunctional software proper-
ties such as worst-case execution
time, worst-case stack usage, and
the occurrence of run-time errors are
hard to detect with testing and mea-
surement methods: As a rule, specific
test cases like stimulating the worst-case
execution time (WCET) are not available,
and there is no known safe test end
criterion. If measurements are based
on code instrumentation, the possibility
that the result might be distorted by
instrumentation has to be ruled out in

the safety-critical area, and this is an un-
solved problem, especially in the case of
run-time measurements. The necessary
test effort is usually high, and the test
results are incomplete.

Formal verification methods offer a
solution because they can mathemati-
cally prove the absence of errors. One
such method is abstract interpretation,
a formal method for static program
analysis. Abstract interpretation-based
static analyzers return reliable results
that are valid for any possible program
execution and for any possible input
scenario. Because of its good scalability,
it can also be used in large software
projects. Today, static analyzers based on
abstract interpretation that can compute
the bounds for the WCET and guarantee
the absence of stack overflows and run-
time errors are widely used in industry
and can be regarded as state-of-the-art
with regard to verifying nonfunctional
software properties [1].

The tool coupling of the static analyz-
ers aiT [2], StackAnalyzer [3] and Astrée
[4] with the production code generator

In model-based development, software is developed at a high level of abstraction, i.e., as a model,

and the C code implementation is automatically generated from the model. The high degree of

abstraction allows intuitive application development and increases the efficiency of development.

However, to verify system safety, it is not enough to regard only the model level; the properties

of the C code and even of the binary machine code also have to be investigated. For example,

this has to be done to determine the bounds for execution time and stack usage as required by

ISO 26262 and also to prove the absence of run-time errors. Such errors can be reliably excluded

by means of abstract interpretation-based static analyzers. The production code generator from

dSPACE, TargetLink, has been coupled with the static analysis tools aiT, StackAnalyzer and Astrée

from AbsInt to allow the analyzers – which function at implementation level – to be integrated

seamlessly into the process of model-based software development. Thus, timing bugs, stack

overflows and run-time errors can be detected in early development phases and reliably excluded.

Elektronik Automotive 03/2014 3

Figure 1: Workfl ow with the coupling of TargetLink with aiT, StackAnalyzer and Astrée.

TargetLink makes it possible to automati-
cally calculate safe upper bounds for the
WCET and maximum stack usage and
also to prove the absence of run-time er-
rors. In addition, errors are detected at an
early stage in the development process
so that expensive integration problems in
late project phases can be avoided. Errors
that are detected can be traced back to
model level, and the close coupling of the
tools considerably improves the effi ciency
of development.

Code Generation and
Simulation

TargetLink® [5], the production code
generator from dSPACE, generates
highly-effi cient C code for production-
level product applications directly
from MATLAB®/Simulink®/Statefl ow®
models. One important property of
TargetLink is the separation between
implementation data – on the gener-
ated functions, variables, value ranges,
etc. - and the model. Because modeled
software is growing in complexity, and
because the associated implementation

specifi cations have to be exchanged
by different developers, a lot of data
is not kept in the model itself, but in a
separate, central container called the
TargetLink Data Dictionary [6]. Each
TargetLink model is associated to a data
dictionary, and the model references
the data elements that the data diction-
ary contains. This centralization makes
it possible for different developers to
work with consistent definitions of
shared data, e.g., interface information
or calibration data. At the same time,
the TargetLink Data Dictionary is an
ideal basis for connecting analysis tools.

In addition to generating the actual
code, TargetLink also provides a way to
execute extensive simulations at an early
stage in different simulation modes. The
model is interpreted in model-in-the-
loop (MIL) simulation, the generated
C code is executed on the host PC in
software-in-the-loop (SIL) simulation,
and the generated code is compiled
with a cross compiler and executed on
an evaluation module in processor-in-
the-loop (PIL) simulation. In early design

phases, these different types of simula-
tion help check whether a model fulfi lls
the functional requirements. Errors in the
model or in other aspects such as scaling
can be detected early on. PIL simulation
additionally provides an easy way to
perform measurements on execution
time and stack usage.

As described at the beginning,
the quality of these simulation- and
test-based verifi cation and validation
activities strongly depends on the quality
and completeness of the simulations or
test cases that are performed. For this
reason, reliable static analyzers should
be used for safety-critical software to
prove the absence of run-time errors
and determine safe upper bounds for
the target processor‘s resources.

Static Analysis of Nonfunctio-
nal Software Properties

A static analysis computes data about
a software program without actually ex-
ecuting the program. Static analyses can
be pure syntax methods such as code
checkers that test for coding guidelines,

TargetLink
Code Generation

Compiler
Linker

Astrée

Worst Case Execution Time /
Worst Case Stack Usage

Code to Model Navigation

Data
Dictionary

Entry Point
and

 Annotations

SystemDesk
System Design

SymTA/S
(Symtavision)

C Code

Executable
(*.elf / *.out)

aiT/
StackAnalyzer

Elektronik Automotive 03/20144

unsound semantics-based methods, or
sound semantics-based methods. The
unsound semantics-based methods
examine a program‘s semantics to find
potential errors but cannot guarantee
that all errors are found. With the sound
semantics-based methods, it is possible
to prove mathematically that no errors
have been overlooked. They are based
on the formal method of abstract inter-
pretation [7] and over the last few years
have become the state-of-the-art for
verifying nonfunctional software proper-
ties [1]. The analyzers described below
belong to the class of sound semantics-
based methods.

Stack Usage
In embedded systems, the run-

time stack is usually the only memory
area that is handled dynamically. As
a rule, the maximum stack usage for
each task must be defined when the
system is configured. If it is underes-
timated, stack overflows can occur.
Stack overflows can cause serious er-
rors. One example is the unintended
acceleration in the 2005 model of
the Toyota Camry: Testimony from
expert witnesses at the US court pro-
ceedings identified stack overflow as
the most probable cause [8].

StackAnalyzer is an abstract
interpretation-based static analyzer
that calculates bounds for tasks‘
maximum stack usage safely and
precisely. The main input to StackA-

nalyzer is an executable binary file,
i.e., the machine code for the target
processor. The analysis requires no
code instrumentation and no debug
information, and precisely examines
the effects of inline assembly and
library functions. The analyzer calcu-
lates how the height of the run-time
stack changes over the program‘s
possible control paths and uses this
to determine a safe upper bound
for the maximum stack usage. The
results of the analysis are visualized
in a call graph and a control flow
graph, and provide important clues
for optimizing the stack usage.

Worst-Case Execution Time
Numerous tasks in safety-critical

embedded systems have hard real-time
requirements. They have to terminate
within fixed time bounds to ensure that
the system functions correctly. Because
of the complexity of modern hardware
and software architectures, determining
the worst-case execution time (WCET)
poses a real problem [9]. For an overview
of methods and tools for WCET analysis,
refer to [10].

aiT WCET Analyzer is a static analyzer
that computes a safe approximation of
all the target processor‘s possible cache
and pipeline states at each point in the
program. All possible program executions
and all possible input scenarios are taken
into account. A precise knowledge of the
microprocessor architecture is necessary

in order to precisely predict the number
of clock cycles needed to execute the ma-
chine instructions. From this information,
the longest execution path through the
program can be calculated, and a safe up-
per bound for the WCET can be derived
from that. Like StackAnalyzer, aiT works
on the target processor‘s executable
binary files. Neither code instrumenta-
tion nor debug information are needed,
and the effects of inline assembly and
library functions are analyzed precisely.
The results of the analysis are visualized
in a call graph and a control flow graph,
and provide important clues for optimiz-
ing time behavior.

Run-Time Errors
Another class of critical program-

ming errors is the so-called run-time
errors such as arithmetic overflows,
array bound violations and invalid
pointer accesses. These can destroy the
data integrity of a program and cause
erroneous system responses or even
a system crash. The explosion of the
Ariane rocket in 1996 is a well-known
example of the effects a run-time error
can have.

One example of a static run-time
error analyzer based on abstract inter-
pretation is Astrée, which finds all the
possible run-time errors in C programs
and can therefore prove the absence of
run-time errors. At the heart of Astrée
is a highly optimized value analysis that
detects relationships between variables
and can precisely approximate the pos-
sible variable values. In addition, the
analyzer‘s precision can be precisely
adjusted to the software under analysis
so that the available computing power
is utilized efficiently. This produces very
low false alarm rates at short analysis du-
rations: Safety-critical avionics software
of more than 500,000 code lines can be
analyzed on an off-the-shelf PC without
false alarms in 6 hours [11].

Tool Coupling

In a model-based development envi-
ronment, it is easy to change and refine
models and to vary the code generation
options. The effects on the behavior and
safety of the control system should be
examined after each change.

Figure 2: Menu of the AbsInt Toolbox.

Elektronik Automotive 03/2014 5

Simulation-based tests are well
integrated into modern model-based
development environments, but reliable
validation of nonfunctional require-
ments is usually not possible. The aim of
coupling aiT, StackAnalyzer and Astrée
with TargetLink is to close this gap and
to make workflows within the interac-
tive development process as efficient
as possible. Moreover, it is extremely
important that the analyzers can evalu-
ate information that is contained in
the TargetLink model but is not part of
the generated code. By automatically
including such information in the analy-
sis, error-prone multiple specifications
of the information can be avoided and
the results of analysis can be consider-
ably improved.

Figure 1 shows the workflow for
calculating the WCET with the coupling
between TargetLink and aiT. First the
generated code is compiled and linked
to produce an executable binary file.
This step is not necessary for analyz-
ing run-time errors, because Astrée
works on the generated C code. Then
the information on the analysis to be

performed is written to an XML file in
XTC format.

XTC (XML Timing Cookie) is a
standardized exchange format that
provides a generic data exchange
interface for any desired analysis and
verification tools [12]. XTC was devel-
oped as part of various international
research projects, including, among
others, INTERESTED, ALL-TIMES, TIM-
MO-2-USE and MBAT. In XTC, users
can specify the type of analysis to be
performed, the files to be analyzed,
the entry point of the analysis, etc.,
and also set the analysis options. Such
a project configuration is automatically
generated for each root function of the
TargetLink model.

The TargetLink Data Dictionary
contains detailed information on the
generated code: the root functions to
be called, the value ranges of input and
output variables, loop limits, informa-
tion on interpolation functions, etc.
Using this information means that a
very high analysis precision can be
achieved, and this is reflected among
other things in a very low number of

false alarms. All the relevant informa-
tion is automatically converted into
formal analysis directives. The annota-
tion languages used are open formats
[13] that require no modifications to
the analyzed files whatsoever and that
are robust toward code changes.

An entry function describing the
execution model is generated for
run-time error analysis. First initializa-
tion functions are executed, then the
model‘s root functions are called from
inside a reactive loop. The value ranges
specified in the model are used for the
input variables, or if no range specifica-
tions are available, the full value range
is used. For the value ranges of output
variables, static assertions are generated.
These allow formal proof of compliance
with the value range. The corresponding
dynamic function tests can be eliminated.
No particular entry point is needed for
WCET and stack analyses, since the
execution time and stack usage are cal-
culated for each root function (runnable)
separately.

All work steps are completely au-
tomated and can be started from the

Figure 3: Tracing potential run-time errors back to the TargetLink model.

Elektronik Automotive 03/20146

AbsInt menu in the Simulink/TargetLink
model window (see Figure 2). The analy-
ses can also be performed automatically,
for example, every time new code is gen-
erated with TargetLink or when regression
tests are executed.

 When the analysis completes, the
WCET for each TargetLink root function
(aiT), its maximum stack usage (StackA-
nalyzer), and messages on potential
run-time errors (Astrée) are written to
XML-based results files, which can be
opened via the Results menu command
in TargetLink. Information on the WCET
and maximum stack usage is also saved
to the TargetLink Data Dictionary. From
there, it can be automatically transferred
to the TargetLink model documentation
or exported for AUTOSAR authoring tools
such as SystemDesk in the standardized
AUTOSAR format.

If TargetLink is called with the Gener-
ate model-linked code view option, the
generated HTML files are automatically
opened in Astrée. This not only simplifies
the analysis of possible run-time errors,
but also allows implementation errors to
be traced back directly to the model level
(see Figure 3).

Summary

The tool coupling described in this
article provides advantages at many
different levels. Program properties at
implementation level – WCET, maximum
stack usage, the occurrence of run-time
errors – are made visible at model level.
They are checked by static analyzers with-
out the test system having to be executed
on a hardware prototype. The analyzers
work on the generated code and provide
complete control and data coverage. The
coupling can be handled efficiently and
intuitively, since the static analyzers can
be called directly from the TargetLink
user interface – if desired, every time the
model is changed. The relevant model
properties are automatically converted
into formal annotations of the analysis
tools, which prevents multiple inputs
and ensures data consistency. The con-
nection between the analysis results
and the model allows errors found at
implementation level to be traced back
to model level. Errors can therefore be
detected at an early stage of the devel-
opment process to avoid expensive inte-
gration problems in later project phases.

The tool coupling specifically addresses
the requirements defined in current
safety standards such as ISO 26262, DO-
178B / DO-178C and IEC-61508. These
require proof that real-time requirements
are fulfilled and that no stack overflows
or run-time errors occur. The result is
an automatic tool chain for developing
safety-critical embedded software that
combines the advantages of model-
based development and static software
verification.

References
[1] �D. Kästner and C. Ferdinand.

Efficient Verification of Non-
Functional Safety Properties by
Abstract Interpretation: Timing,
Stack Consumption, and Absence
of Runtime Errors. In Proceedings
of the 29th International System
Safety Conference ISSC2011,
Las Vegas, 2011.

[2] �AbsInt GmbH. aiT Worst-Case
Execution Time Analyzer Website.
http://www.absint.com/ait

[3] �AbsInt GmbH. StackAnalyzer
Website. http://www.absint.com/
sa.

[4] �AbsInt GmbH. Astrée Website.
http://www.absint.com/-astree

[5] �dSPACE GmbH. TargetLink Web-
site. http://www.dSPACE.com/go/
TargetLink.

[6] �dSPACE GmbH. TargetLink Data
Dictionary Basic Concepts Guide,
November 2013.

[7] �P. Cousot and R. Cousot. Abstract
interpretation: a unified lat-
tice model for static analysis of
programs by construction or ap-
proximation of fixpoints. In POPL
’77, pages 238–252, 1977.

[8] �M. Dunn. Toyota’s killer firmware:
Bad design and its consequences.
EDN Network. http://www.edn.
com/design/automotive/4423428/
Toyota-s-killer-firmware–Bad-
design-and-its-consequences,
October 2013.

[9] �D. Kästner, M. Pister,
G. Gebhard, M. Schlickling,
and C. Ferdinand. Confidence
in Timing. Safecomp 2013
Workshop: Next Generation of
System Assurance Approaches for
Safety-Critical Systems (SASSUR),
September 2013.

[10] �R. et al. Wilhelm. The worst-case
execution-time problem — over-
view of methods and survey
of tools. ACM Transactions on
Embedded Computing Systems,
7(3):1–53, 2008.

[11] �D. Kästner, S. Wilhelm,
S. Nenova, P. Cousot, R. Cousot,
J. Feret, L. Mauborgne, A. Miné,
and X. Rival. Astrée: Proving the
Absence of Runtime Errors.
Embedded Real Time Software
and Systems Congress ERTS 2,
2010.

[12] �AbsInt. XTC Language Specifica-
tion Version 2.1.
http://www.absint.com/xtc/2013.

[13] �D. Kästner, U. Kiffmeier,
D. Fleischer, S. Nenova, M.
Schlickling, and C. Ferdinand.
Integrating Model-Based Code
Generators with Static Program
Analyzers. Embedded World
Congress, 2013.

Dr. Daniel Kästner
is Chief Technical Officer at AbsInt

Angewandte Informatik GmbH.

Carsten Rustemeier
is Product Engineer TargetLink

at dSPACE GmbH.

http://www.dspace.com/go/TargetLink
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.absint.com/sa
http://www.absint.com/sa
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

www.dspace.com

03/2014

Company Headquarters
in Germany

dSPACE GmbH
Rathenaustraße 26
33102 Paderborn
Tel.:	 +49 5251 1638-0
Fax:	 +49 5251 16198-0
info@dspace.de

China

dSPACE Mechatronic Control
Technology (Shanghai) Co., Ltd.
Unit 1101-1104, 11F/L
Middle Xizang Rd. 18
Harbour Ring Plaza
200001 Shanghai
Tel.: +86 21 6391 7666
Fax: +86 21 6391 7445
infochina@dspace.com

United Kingdom

dSPACE Ltd.
Unit B7 . Beech House
Melbourn Science Park
Melbourn
Hertfordshire . SG8 6HB
Tel.: +44 1763 269 020
Fax: +44 1763 269 021
info@dspace.co.uk

Japan

dSPACE Japan K.K.
10F Gotenyama Trust Tower
4-7-35 Kitashinagawa
Shinagawa-ku
Tokyo 140-0001
Tel.: +81 3 5798 5460
Fax: +81 3 5798 5464
info@dspace.jp

France

dSPACE SARL
7 Parc Burospace
Route de Gisy
91573 Bièvres Cedex
Tel.: +33 169 355 060
Fax: +33 169 355 061
info@dspace.fr

USA and Canada

dSPACE Inc.
50131 Pontiac Trail
Wixom . MI 48393-2020
Tel.: +1 248 295 4700
Fax: +1 248 295 2950
info@dspaceinc.com

© Copyright 2014, dSPACE GmbH.

All rights reserved. Written permission is required for reproduction of all or parts of this publication. The source must
be stated in any such reproduction. dSPACE is continually improving its products and reserves the right to alter the
specifications of the products contained within this publication at any time without notice.
dSPACE is a registered trademark of dSPACE GmbH in the United States or other countries, or both.
See www.dspace.com/goto?trademarks for a list of further registered trademarks. Other brand names or product
names are trademarks or registered trademarks of their respective companies or organizations.

