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ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

The WCET Tool Challenge 2011

R. von Hanxleden, N. Holsti, B. Lisper, J. Gustafsson, N.
Mohammad Islam, E. Ploedereder, W. Fellger, S. Gepperth, F.
Krause, R. Wilhelm, A. Bonenfant, H. Cassé, M. de Michiel, C.
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Abstract

Following the successful WCET Tool Challenges in 2006 and 2008,
the third event in this series was organized in 2011, again with sup-
port from the ARTIST DESIGN Network of Excellence. Following the
practice established in the previous Challenges, the WCET Tool Chal-
lenge 2011 (WCC’11) defined two kinds of problems to be solved by
the Challenge participants with their tools, WCET problems, which
ask for bounds on the execution time, and flow-analysis problems,
which ask for bounds on the number of times certain parts of the
code can be executed. The benchmarks to be used in WCC’11 were
debie1, PapaBench, and an industrial-strength application from the
automotive domain provided by Daimler AG. Two default execution
platforms were suggested to the participants, the ARM7 as “simple
target” and the MPC5553/5554 as a “complex target,” but partici-
pants were free to use other platforms as well. Ten tools participated
in WCC’11: aiT, Astrée, Bound-T, FORTAS, METAMOC, OTAWA,
SWEET, TimeWeaver, TuBound and WCA.

1 Introduction

The chief characteristic of (hard) real-time computing is the requirement to
complete the computation by a given deadline. The execution time usually
depends on the input data and the architecture’s state.

1.1 The WCET Problem Statement and Existing Approaches

It is important to find the worst-case execution time (WCET) and verify
that it is short enough to meet the deadlines in all cases.

Several methods and tools for WCET analysis have been developed.
Some tools are commercially available. The survey by Wilhelm et al. (2008)
is a good introduction to these methods and tools. Some tools use pure static
analysis of the program; other tools combine static analysis with dynamic
measurements of the execution times of program parts. Unlike most applica-
tions of program analysis, WCET tools must analyse the machine code, not
(only) the source code. This means that the analysis depends on the target
processor, so a WCET tool typically comes in several versions, one for each
supported target processor or even for each target system with a particu-
lar set of caches and memory interfaces. Some parts of the machine-code
analysis may also depend on the compiler that generates the machine code.
For example, the analysis of control-flow in switch-case statements may be
sensitive to the compiler’s idiomatic use of jumps via tables of addresses.

In general, WCET tools use simplifying approximations and so deter-
mine an upper bound on the WCET, not the true WCET. The pessimism,
that is the difference between the true WCET and the upper bound, may be
large in some cases. For most real, non-trivial programs a fully automatic
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WCET analysis is not (yet) possible which means that manual annotations
or assertions are needed to define essential information such as loop iter-
ation bounds. The need for such annotations, and the form in which the
annotations are written, depends on both the WCET tool and on the target
program to be analysed.

1.2 The WCET Tool Challenge: Aims and History

As the term “Challenge” suggests, the aim is not to find a “winning” tool
but to challenge the participating tools with common benchmark problems
and to enable cross-tool comparisons along several dimensions, including the
degree of analysis automation (of control-flow analysis, in particular), the
expressiveness and usability of the annotation mechanism, and the precision
and safety of the computed WCET bounds. Through the Challenge, tool
developers can demonstrate what their tools can do, and potential users of
these tools can compare the features of different tools.

Jan Gustafsson of the Mälardalen Real-Time Centre organized the first
WCET Tool Challenge in 2006, using the Mälardalen benchmark collec-
tion (Gustafsson, Betts, Ermedahl, and Lisper 2010) and the PapaBench
benchmark (Nemer et al. 2006), with participation from five tools (aiT,
Bound-T, SWEET, MTime, and Chronos). Lili Tan of the University of
Duisburg-Essen did the evaluation of the tools on these benchmarks and
reported about the results (Gustafsson 2006; Gustafsson 2007) and later in
STTT (Tan 2009).

The second WCET Tool Challenge was organized in 2008 (WCC’08).
Results were presented at the 8th International Workshop on Worst-Case
Execution Time (WCET) Analysis (Holsti et al. 2008). Two of the WCC’06
participants (Bound-T and MTime) as well as four new tools (OTAWA,
RapiTime, TuBound and wcc) participated in WCC’08. The second Chal-
lenge differed from the first in that it suggested a common execution plat-
form (the ARM7 LPC2138) and also defined pure flow-analysis problems.
It included less benchmarks (5 instead of 17), but increased the number of
analysis problems.

1.3 Contributions and Outline

The third WCET Tool Challenge was organized in 2011 (WCC’111) and
is the subject of this report. As a first overview, Table 1 lists the tools
participating in the Challenge and indicates which target processors each
participant has addressed for WCC’11; most tools support other target pro-
cessors, too.

1http://www.mrtc.mdh.se/projects/WCC/ — this web page links to the wiki of the
WCC’11 as well as to the previous WCC editions.
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Tool Description Source-code ARM7 MPC5554 Other
in Section flow analysis (Sec. A.1) (Sec. A.2) target processors

aiT 2.1 + +
Astrée 2.2 +
Bound-T 2.3 +
Fortas 2.4 + TC1796 (Sec. A.3)
METAMOC 2.5
OTAWA 2.6 + + +
SWEET 2.7 +
TimeWeaver 2.8 +
TuBound 2.9 + C167 (Sec. A.4)
WCA 2.10 JOP (Sec. A.5)

Table 1: Participating tools and target processors used in WCC’11.

This report combines contributions from the WCC’11 participants and
is edited by the WCC’11 steering group, some of whom are also WCC’11
participants. In Sec. 2, the most substantial section of this report, the
participants in turn describe their tools and the experiences in participating
in the Challenge. The overall results are reported in Sec. 3. In addition
to the tool authors who tested their tools on the debie1 and PapaBench
benchmarks, a group of students of the University of Stuttgart, led by Erhard
Ploedereder, tried some of the tools on a proprietary benchmark supplied
by Daimler AG; they report their experience in Sec. 4. The paper concludes
in Sec. 5. The target architectures are described in the appendix A.

It should be noted that not only the Challenge itself, but also this re-
port adopts much from the previous edition, including both structure and
content. Specifically, the WCET problem statement, the descriptions of
the ARM processor and the debie1 benchmark, and the presentation of the
types of analysis problems are largely quoted from the WCC’08 report (Hol-
sti et al. 2008). Maintaining most of the report structure may facilitate
tracing the development of the Challenge and the participating tools.

1.4 The Benchmarks

Thanks to Daimler, we could from the beginning count on an industrial-size,
real-world benchmark to be included in WCC’11, see Sec. 1.4.3. However,
it was also clear rather early that this benchmark would not be suitable
for all analysis tools. To broaden the tool base, and to also be attractive to
participants of previous Challenges, we decided to reuse two benchmarks, the
PapaBench already used in WCC’06 (Sec. 1.4.2), and the debie1 benchmark
introduced in WCC’08 (see Sec. 1.4.1).
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1.4.1 The debie1 benchmark

The debie1 (First Standard Space Debris Monitoring Instrument, Euro-
pean Space Agency2) benchmark is based on the on-board software of the
DEBIE-1 satellite instrument for measuring impacts of small space debris
and micro-meteoroids. The software is written in C, originally for the 8051
processor architecture, specifically an 80C32 processor that is the core of
the the Data Processing Unit (DPU) in DEBIE-1. The software consists
of six tasks (threads). The main function is interrupt-driven: when an im-
pact is recorded by a sensor unit, the interrupt handler starts a chain of
actions that read the electrical and mechanical sensors, classify the impact
according to certain quantitative criteria, and store the data in the SRAM
memory. These actions have hard real-time deadlines that come from the
electrical characteristics (hold time) of the sensors. Some of the actions
are done in the interrupt handler, some in an ordinary task that is acti-
vated by a message from the interrupt handler. Two other interrupts drive
communication tasks: telecommand reception and telemetry transmission.
A periodic housekeeping task monitors the system by measuring voltages
and temperatures and checking them against normal limits, and by other
checks. The DEBIE-1 software and its WCET analysis with Bound-T were
described at the DASIA’2000 conference (Holsti, L̊angbacka, and Saarinen
2000).

The real DEBIE-1 flight software was converted into the debie1 bench-
mark by removing the proprietary real-time kernel and the low-level periph-
eral interface code and substituting a test harness that simulates some of
those functions. Moreover, a suite of tests was created in the form of a test
driver function. The benchmark program is single-threaded, not concurrent;
the test driver simulates concurrency by invoking thread main functions in
a specific order. The DEBIE-1 application functions, the test harness, and
the test driver are linked into the same executable. This work was done at
Tidorum Ltd by Niklas Holsti with ARTIST2 funding.

Space Systems Finland Ltd (SSF), the developer of the DEBIE-1 soft-
ware, provides the software for use as a WCET benchmark under specific
Terms of Use that do not allow fully open distribution. Copies of the soft-
ware can be requested from Tidorum3. SSF has authorized Tidorum to
distribute the software for such purposes.

1.4.2 The PapaBench Benchmark

PapaBench (Nemer, Cassé, Sainrat, Bahsoun, and Michiel 2006) is a WCET
benchmark derived from the Paparazzi UAV controller. This controller has
been developed in the ENAC school in Toulouse and targets low-cost UAV,

2http://gate.etamax.de/edid/publicaccess/debie1.php
3http://www.tidorum.fi/
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that is, model airplane embedding a microprocessor.
Basically, the UAV is made of several actuators (motor, flaps, etc) and a

very light set of sensors including a GPS (connected by a serial port) and an
infrared sensor to control slope. The system may be controlled from ground
using a classical wireless link or may fly in an autonomous mode performing
a pre-programmed mission. In this case, the wireless descending link is only
used to transfer flight log or video if the payload is composed of a little
camera.

In its original configuration, the computing hardware was composed of
two ATMEL AVR microprocessors communicating by a SPI link. The first
one, fbw (fly-by-wire), was responsible for the control of actuators and sen-
sors and for the stabilization of the flight. It was also used to perform
commands emitted by the wireless link. The second microprocessor, au-
topilot, was a bit more powerful and was concerned with the realization of
the mission, that is, the choice of the flight plan. The system has several
emergency modes activated according to the whole system state. In a first
mode, it tries to return to its “home” base. In another one, it tries to save
the integrity of the model plane by ensuring a minimal landing drive. And
in a very bad case, it puts the actuators in a configuration ensuring it will
simply plane gracefully in the hope it may land without breaking anything.

To perform a flight, the first task is to program a flight plan and to
generate automatically a piece of code included in the embedded software
system. Then, the full system is compiled and composed of two binary
programs: fbw and autopilot. In the next step, the programs are transferred
to the controller and the plane is launched (by hand) and the controller starts
to drive the plane. If all is ok, the flight plan ends with the model plane
landing at its starting point.

1.4.3 The Daimler benchmark

The benchmark is part of a control system for trucks that deals with, among
others, collision detection. The code is compiled for the MPC 5553 archi-
tecture using the WindRiver Diab compiler. The target processor does not
have any external memory. VLE instructions are not used.

Due in part to circumstances described in section 4.2, the ultimate choice
of WCET questions was directed at four entry points below the task level
of different types:

• An interrupt handler INTERR

It is a simple interrupt handler that only calls one function and does
not include any loops.

• An initialization routine INIT: This is a second simple entry point that
sets some variables, does not call any functions and has no loops.
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• Two calculation routines CALC1 and CALC2: These routines execute
moderately complex numeric calculations. They include some loops
and static function calls.

• A complete task of the embedded system TASK: This is a typical task
of an embedded system; it is the body of an endless loop that executes
some subtasks and then suspends itself until it needs to run again.

1.5 The Analysis Problems

For each WCC benchmark, a number of analysis problems or questions are
defined for the participants to analyse and answer. There are two kinds
of problems: WCET-analysis problems and flow-analysis problems. Flow-
analysis problems can be answered by tools that focus on flow-analysis (for
example SWEET) but that do not have the “low-level” analysis for com-
puting WCET bounds. Flow-analysis problems can also show differences in
the flow-analyses of different WCET tools, and this may explain differences
in the WCET bounds computed by the tools.

A typical WCET-analysis problem asks for bounds on the WCET of
a specific subprogram within the benchmark program (including the exe-
cution of other subprograms called from this subprogram). For example,
problem 4a-T1 for the debie1 benchmark asks for the WCET of the Han-
dle Telecommand function when the variable input data satisfy some specific
constraints.

A typical flow-analysis problem asks for bounds on the number of times
the benchmark program executes a certain statement, or a certain set of
statements, within one execution of a root subprogram. For example, prob-
lem 4a-F1 for the debie1 benchmark asks how many calls of the macro
SET DATA BYTE can be executed within one execution of the function Handle-
Tele-command, under the same input-data constraints as in the WCET-
analysis problem 4a-T1. By further requiring the analysis to assume that
the execution time of SET DATA BYTE is arbitrarily large we make it possible
for pure WCET-analysis tools to answer this flow-analysis question, since
this assumption forces the worst-case path to include the maximum number
of SET DATA BYTE calls; all alternative paths have a smaller execution time.

2 Tools and Experience

An overview of the tools and target processors used in WCC’11 was given
in Table 1. As indicated there, five out of ten tools do flow analysis on
the source-code level. This means that their flow-analysis results could in
principle be compared in source-code terms. For example, on the source-
code level we can talk about iteration bounds for specific loops, which is not
possible on the machine-code level because of code optimizations.
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On the ARM7, aiT, Bound-T, OTAWA used the gcc ARM 3.4.1 for
PapaBench, and the gcc-if07 for debie1. TuBound used the gcc-c16x for the
C167. aiT and TimeWeaver used the powerpc-eabi-gcc (Sourcery G++ Lite
2010.09-56) 4.5.1 for the MPC5554. FORTAS used the hightec-tricore-gcc-
3.4.5 for the TC1796.

In the following, each tool is briefly described, followed by a report on the
experience and results gained by participating in WCC’11. The descriptions
are written by the developers of the tool, edited only for uniform formatting.

2.1 aiT (written by S. Wegener and D. Kästner)

AbsInt’s aiT4 is a timing verification tool. Static WCET analysis is used
to compute a safe upper bound of the actual WCET of a task. Its target
processors range from simple architectures like the ARM7TDMI to highly
complex architectures like the PowerPC 7448.

The main input of aiT is the binary executable, from which the control-
flow graph is reconstructed. No code modification is required. On the
control-flow graph, several static analyses take place to compute the exe-
cution time of each instruction. A global path analysis is used afterwards
to compute the task’s overall WCET bound. Manual annotations can be
used to express known control-flow facts or values of registers and memory
cells. aiT has been successfully used for timing verification in the avionics,
aeronautics and automotive industries (e. g. (Souyris et al. 2005; NASA
Engineering and Safety Center 2011)).

aiT already supported the proposed common target architectures. Thus
nothing had to be changed to analyze the benchmarks. Nevertheless, both
the control-flow reconstruction part of aiT as well as the loop analysis part
have been extended to reduce the amount of annotations that must be man-
ually added to perform the analyses of the benchmarks.

2.1.1 Analysis of the debie1 benchmark

Both the MPC5554 version and the ARM7 version have been analyzed.
A WCET bound could be computed for each problem. For the T2 prob-

lems concerning the maximal interrupt blocking times, we are assuming
for any function containing the interrupt enabling/disabling macro that the
entire function is executed with disabled interrupts. This had to be done be-
cause the macros DISABLE INTERRUPT MASTER and ENABLE INTER-
RUPT MASTER were defined as no-ops and thus not visible in the binary.
Only little overestimation is introduced by this simplification since most
routines called the macros directly at the beginning and at the end. As
an exceptional case, the routine “RecordEvent” enables interrupts, calls
“FindMinQualityRecord” and then disables the interrupts again. Here, the

4http://www.absint.com/ait/
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WCET contribution of “FindMinQualityRecord” has been subtracted from
the WCET contribution of “RecordEvent” to get the execution time of the
interrupt-disabled region.

Most loop bounds were derived automatically by aiT. For those loops
where this was not the case loop bound annotations have been manually
added. The input constraints as defined in the WCET Tool Challenge’s
wiki5 have been used to write annotations for the analyses. All input con-
straints except one could be transformed to annotations. The one exception
is problem 2c for ARM7. Here, the compiler transformed an if-then-else
construct into conditionally executable code. Although aiT analyzes condi-
tionally executable code, there is at the moment no possibility to annotate
the state of the condition flags.

The annotations provided to aiT can be found in the wiki of the 2011
WCET Tool Challenge. Also all the flow questions were answered. However,
the invocation counts are computed only for the worst-case path. Due to
this, the answers of problem 6d, question F1 differ between the ARM7 and
the MPC5554. On the latter, “SetSensorUnitOff” is not on the critical path
and thus the invocation count is zero (instead of eight on the ARM7).

2.1.2 Analysis of the PapaBench benchmark

Only the ARM7 code in RAM version has been analyzed. A bound6 could
be computed for each problem. One problem during the analysis was that
the fly-by-wire executable contains debug information which could not be
read by aiT or GNU objdump. Fortunately, the benchmark’s creator was
able to send a file which contained the mapping between source code lines
and binary code addresses. With the help of this file, we could also answer
the flow question of problem F1b. Another problem were the loops in the
software floating point library. This floating point library is not used by any
of our commercial customers and no loop bound annotations were available.

aiT was only able to derive some loop bounds, but not all. To derive the
remaining bounds by hand/brain would have required more effort than we
were willing to invest. Therefore, we simply assumed 99 iterations for the
actual division loop.

Of the flow questions, only those regarding feasible or unfeasible code
have been answered. The rest of the questions concerned the bounds of angle
normalisation loops for which aiT did not automatically find loop bounds.
We simply annotated them to iterate once. Our annotations can be found
in the wiki of the 2011 WCET Tool Challenge.

5http://www.mrtc.mdh.se/projects/WCC/2011/doku.php?id=bench:debie1, as of May 5,
2011

6The correctness of this bound depends on the correctness of our loop bound assumptions.
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2.1.3 Comments on the Daimler benchmark

Comparing the results in Table 6 (Sec. 4.3) for the aiT OTAWA-like MPC5554
configuration and OTAWA MPC5554 for the small code snippets INTERR and
INIT, we see a rather high difference of a factor of about 2.

AbsInt found the OTAWA MPC5554 results to be surprisingly low in
some cases and assumed that OTAWA underestimates the WCET. With-
out access to the Daimler code, we used another executable and used our
MPC5554 evaluation board to produce a NEXUS trace for the entry point
of a given function in the processor configuration supported by OTAWA.
This trace shows an execution time of around 451 cycles, while the OTAWA
tool only predicts 320 cycles. We therefore assume that there is a difference
in the CPU modeling of aiT and OTAWA and the results are not compara-
ble. Unfortunately, it was not possible to get actual hardware measurements
from Daimler for the entry points we used.

2.2 Astrée (written by S. Wegener and D. Kästner)

Astrée7 (Kästner et al. 2010) is a verification tool to prove the absence of
runtime errors in embedded C code compliant to the C99 standard. Exam-
ples of runtime errors which are handled by Astrée include division by zero,
out-of-bounds array indexing, and erroneous pointer accesses. Moreover,
Astrée can be used to prove that user-defined assertions are not violated.
As an experimental feature, Astrée can export loop bound annotations and
function pointer target annotations for aiT.

Astrée is not directly targeted at WCET analysis. However, the infor-
mation it computes can be used to help the WCET analysis. For the debie1
benchmark, Astrée has been used to derive flow facts (like loop bounds and
function pointer targets) from the C source code.

2.2.1 Analysis of the debie1 benchmark

Astrée is not directly targeted on flow analysis. However, we were interested
how well Astrée can be used to retrieve flow information useful for WCET
analysis.

An experimental feature has been added to Astrée to produce loop bound
annotations and function pointer target annotations for aiT. To count rou-
tine invocations, for each routine of interest, an own static integer variable
had been added. These variables are incremented by one for each routine
invocation. Astrée’s value analysis is then used to derive an interval for
these variables. Answers were produced for all flow problems.

The following assumptions have been used during the analysis: (1) Only
the tasks of interest have been analyzed, but no initialization routines, be-

7http://www.absint.com/astree/
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cause the problem specification stated that any task may run between the
invocation of the particular task and its initialization tasks. Thus all pos-
sible values have been assumed for those variables that were not initialized
inside the analyzed tasks. (2) For those variables where some input con-
straints were given in the problem description the constraints have been
used to narrow down the value range of these variables.

The analysis of the debie1 benchmark showed that in principle, Astrée
can be used to compute the flow information needed for WCET analysis.

2.3 Bound-T (written by N. Holsti)

Bound-T is a WCET analysis tool that uses static analysis of machine code
to compute WCET bounds and (optionally) stack-usage bounds. Starting
from the entry point of the specified root subprogram Bound-T constructs
the control-flow and call graphs by fetching and decoding binary instruc-
tions from the executable file. Bound-T models the integer computations
as transfer relations described by Presburger arithmetic formulas and then
analyses the transfer relations to identify loop induction variables and loop
bounds and to resolve dynamic branches. Some infeasible paths may also be
detected. Various simpler analyses such as constant propagation and copy
propagation are applied before the powerful but costly Presburger models.
Bound-T is focused on microcontrollers with predictable timing. Caches and
other very dynamic hardware components are not considered. The WCET
is calculated with the Implicit Path Enumeration technique, applied to each
subprogram separately. Bound-T is commercially distributed and supported
by Tidorum Ltd.

2.3.1 Bound-T’s Participation in this Challenge

Of the target processors suggested for the 2011 WCET Challenge, Bound-T
supports only the ARM7. Participation was thus limited to the benchmarks
available for the ARM7: debie1 and PapaBench. Both benchmarks have
been used in earlier Challenges. For the 2011 Challenge the debie1 analy-
sis problems were slightly changed, based on participant feedback from the
2008 Challenge, so the Bound-T annotations had to be updated correspond-
ingly. PapaBench was used in the 2006 Challenge, but not in 2008 when
the “analysis problem” structure was introduced, so the PapaBench analy-
sis problems were new. However, many low-level annotations from the 2006
Challenge could be reused.

2.3.2 Problems with Benchmarks

The capabilities of Bound-T have evolved only a little since the 2008 Chal-
lenge, so all of the difficulties with debie1 in the 2008 Challenge are still
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present, for example the inability to find and analyse the WCET of interrupt-
disabled code regions, as required by the debie1 analysis problems 5a-T2 and
others. Many of the constraints and assumptions in the debie1 analysis prob-
lems cannot be expressed as such in the Bound-T annotation language, but
must be translated into different kinds of annotations that have the same
effect on the analysis. For example, there is no way to assert that a variable
does not have a specific value, as required by the debie1 analysis problem
2a. This translation requires study of the benchmark source code and is not
always easy.

PapaBench created new problems, some of which were quite different
from the debie1 problems. In PapaBench, almost all loops aim to normal-
ize floating-point variables, representing angles, to some basic “unwrapped”
range, for example 0 to 360 degrees. The loops do this by repeatedly adding
or subtracting a full circle until the basic range is reached. Bound-T does
not attempt to find bounds for loops where termination depends on floating-
point conditions, so loop bounds had to be found manually. This meant
finding bounds on the value of the angle variable on entry to the normali-
sation loops. This was tolerably easy for some cases, but too hard in other
cases, for which the loop bounds were guessed.

The PapaBench analysis problem A5 asks for the WCET of a part of
a C function. Bound-T does not have a general “point-to-point” analysis
capability, but in this case the interesting part is the tail end of the function,
so Bound-T was told to analyse the “function” starting at the first instruc-
tion in the interesting part, as if this instruction were the entry point of a
function, and go on in the normal way to the return instruction.

2.3.3 Conclusions for Bound-T

The 2011 Challenge did not reveal any new problems or inspire new ideas for
improving Bound-T. However, it was a useful reminder about the problems
with translating constraints from the conceptual, application-oriented level
to concrete, code-oriented annotations. This is a gap that should be filled,
but filling it may need new ideas for representing really high-level constraints
in WCET analysis.

2.4 Fortas (written by S. Bünte, M. Zolda, and R. Kirner)

Fortas (the FORmal Timing Analysis Suite) derives WCET estimates of
software tasks running on embedded real-time systems. The Fortas tool
suite is based on a hybrid approach that combines execution time mea-
surements with static program analysis techniques and follows the general
principles of measurement-based timing analysis (MBTA) (Wenzel, Kirner,
Rieder, and Puschner 2008).

The Fortas tool suite extends the classical workflow of MBTA, which
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Figure 1: Workflow of measurement-based timing analysis in FORTAS

consists of the three stages analysis and decomposition, execution time mea-
surement, and timing estimation/composition, by introducing feedback-driven
input data generation, as illustrated by Figure 1. Unlike many other ap-
proaches, the Fortas tool suite does not devise one ultimate WCET estimate—
it rather produces an ongoing sequence of progressively more precise es-
timates. In particular, the Fortas tool suite uses feedback-driven input
data generation to reduce optimism in the timing model (Bünte, Zolda,
Tautschnig, and Kirner 2011; Buente, Zolda, and Kirner 2011). In prac-
tice, the estimate converges quickly to a sufficiently stable value, such that
the analysis can be finished. To limit the pessimism during timing estima-
tion, the Fortas tool suite uses context-sensitive IPET (Zolda, Bünte, and
Kirner 2011).

2.4.1 Porting the Benchmarks

We ported PapaBench to the TC1796 (described in Sec. A.3) and analyzed
problems A1, A2A, F1a, F1b, and F2.

• We removed the scheduler and analyzed each target function of the
respective benchmark problem in isolation. Code that is not needed for
a problem is omitted. Analyzing the whole source code in its original
version is not feasible with our input data generation technique.

• We annotated trigonometrical functions from our TC1796 math.h with
assume statements of the model checker CBMC to restrict the domain
of function arguments. We did this to partly re-incorporate context
information that had been lost by removing the scheduler.

• We added start-up code that initializes the processor. The code ma-
nipulates TriCore-specific registers to set the CPU clock to a frequency
of 150MHz.

13



• We changed the benchmark to emulate certain accesses to memory
registers by global variables. For example, the call of the macro
SpiIsSelected() was substituted by a read access to a global variable
spi is selected.

• We expanded the preprocessor macros and moved some C expressions
and statements to dedicated source code lines, in order to get a canon-
ical version that is interpreted consistently among all Fortas tools.
For the same reason we made short-cut evaluation in decisions and
conditional expressions explicit, i.e., we translated such conditionals
to semantically equivalent cascades of if-statements.

• We converted loops, so that iteration bounds are easily found by
CBMC.

• We removed static and inline declarations without changing the
program semantics. Also, we substituted typedef directives with
equivalent types that do not incorporate any typedef. The reason
for this modification is that these features are not supported by our
prototype.

The transformed versions of PapaBench can be downloaded from our web-
site8.

2.4.2 Analysis

With our prototype implementation we can analyze ISO C code. We use
HighTec’s GCC version 3.4.5 to compile the source code for our target pro-
cessor, the TriCore 1796. We then executed the program on the target plat-
form and captured cycle-accurately time-stamped execution traces using a
Lauterbach LA-7690 PowerTrace device that is connected to the target sys-
tem via the processor’s On-Chip Debug Support (OCDS) Level 2 debugging
interface.

Internally, our tools work on a CFG representation of the software under
analysis. Loop bounds and other flow facts are currently provided by the
user. In the current setting we turned optimization off when compiling the
benchmark sources. This is needed in the current implementation stage of
the prototype implementation. But this will not be needed in the future,
as we have recently shown within the research project SECCO9 that we
can achieve quite high optimization while still maintaining preservation of
structural code coverage criteria.

We automatically generate suitable input data using a model-checking
based method [Holzer, Schallhart, Tautschnig, and Veith 2008; 2009] that

8http://www.fortastic.net/benchmarks_wcc_2011.zip
9http://pan.vmars.tuwien.ac.at/secco/
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has been implemented as the FShell10 tool. FShell itself is based on
the C Bounded Model Checker (CBMC) version 3.8 (Clarke, Kroening, and
Lerda 2004). The input to FShell is a test suite specification, expressed
in the FShell Query Language (FQL) (Holzer, Schallhart, Tautschnig, and
Veith 2010).

2.4.3 Problems and Solutions

We encountered several limitations of our analysis tool, most of which are
due to the nature of our prototypical implementation: we had to change
the benchmarks manually (see above) in order to make them work with the
Fortas tool suite, which took far more time than we expected. However,
those issues can be resolved given sufficient engineering resources to resolve
those prototypical deficiencies.

However, some limitations are specific to our analysis approach: the
reason why we cannot analyze problems A2b and A3-A6 is due to limitations
of our input data generation techniques. Our version of CBMC utilizes an
SMT solver that cannot find models for the respective problems efficiently.
We suspect the combination of floating point variables and multiplication
operations to be the source of the problem. This seems to point at a need
for complementary generation methods for input data.

2.4.4 Comments on the WCET Tool Challenge

First, our research benefits from the extended pool of benchmarks. Second,
some of the encountered limitations will drive us both in terms of tool engi-
neering and in addressing the problem of input data generation in our future
research.

Unfortunately, our prototype implementation is not compliant to any of
the target processors that are officially supported by the challenge. Also, we
did not have the resources available to add another target system to our tool.
Retargeting an MBTA tool to a new target platform requires considerably
less effort than in the case of a static WCET analysis tool, but still needs
some effort to set up the tool chain.

2.5 METAMOC (written by M. C. Olesen)

METAMOC (Dalsgaard et al. 2010) analyses WCET problems by convert-
ing the CFG of a program into a timed automata model, which is combined
with models of the execution platform (pipeline, caches). The combined
model is then model checked using the UPPAAL model checker, asking for
the maximal value the cycle counter can attain, which is then the WCET
estimate. No automated flow analysis is implemented, so all flow facts and

10http://code.forsyte.de/fshell
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loop bounds have to be manually annotated, either in the C source code,
or by modifying the resulting model. Non-determinism is used to explore
all branches, and can therefore also be used in the annotations, if there are
uncertainties. Of course, the less precise the annotations the more possibil-
ities the model checker has to explore, and too little precision results in the
model checker running out of memory.

2.5.1 Experience

The WCET Challenge was the first time we applied our tool to a real-world
benchmark. As such, we were not able to solve many of the problems. The
main problem we encountered in applying METAMOC was getting anno-
tations of a good enough quality. Particularly the floating point routines
compiled in by GCC are of crucial importance: they are called very fre-
quently so therefore the annotations need to be of high quality (to limit the
possible paths through the function), but on the other hand the routines are
highly optimized so therefore hard to analyse.

2.6 OTAWA (written by A. Bonenfant, H. Cassé, M. de
Michiel, and C. Rochange)

OTAWA (Ballabriga, Cassé, Rochange, and Sainrat 2011) is a library dedi-
cated to the development of WCET analyzers. It includes a range of facilities
such as:

• loaders

– to load the binary code to be analyzed. Several ISAs are sup-
ported: PowerPC, ARM, TriCore, Sparc, HCS12. New binary
loaders can be generated with the help of our GLISS tool (Rat-
siambahotra, Cassé, and Sainrat 2009).

– to load a description of the flow facts (loop bounds, targets of
indirect branches, imposed branch directions). For complex flow
facts, the description can be supplemented with a set of hand-
written constraints to be added to the ILP formulation (IPET (Li
and Malik 1995)).

– to load a description of the target hardware (processor, memory
hierarchy, memory map, etc.). Only generic architectures can be
described that way: fort specific targets the user needs to write
specific analyses where needed.

• annotation facilities (called properties) that make it possible to anno-
tate any object (instruction, basic block, etc.) with any kind of value.
They are used to store the results of the successive analyses.
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• code processors that use already-computed annotations and produce
new ones. Built-in code processors include a CFG builder, a CFG
virtualizer, loop dominance analyzers, support for abstract interpre-
tation, hardware analyzers (pipeline, caches, branch predictor), and a
WCET calculator based on the IPET method (with the help of the
lp solve tool).

The library comes with a set of built-in tools that check for absolutely-
required flow facts, dump the CFG in various formats (e. g. dot), compute
a WCET following an input script that describes the specific analyses to be
applied, etc. These tools are also available in an Eclipse plugin.

OTAWA is open-source software available under the LGPL licence11.

2.6.1 Problems and solutions

Both the recommended targets, namely the PowerPC MPC5554 and the
ARM LPC2138 have been modeled in OTAWA. However, we discovered that
the PowerPC version of the debie1 benchmark includes VLE instructions
which are not supported by OTAWA so far. Then we decided to focus on
the ARM target.

The problems we have encountered are all related to flow facts. Some
are inherent to the code of the benchmarks, others come from the questions
we had to answer.

General difficulties. To compute loop bounds automatically, we use the
oRange (Michiel, Bonenfant, Cassé, and Sainrat 2008) companion tool de-
veloped in our group. It works on the source code. Unfortunately, oRange
was not able to determine all the bounds: for some of the problems, the
source code of some functions was missing (e. g. debie1 5a, PapaBench F1a);
the increment of some of the loops (e. g. in debie1 6b) could not be com-
puted. In such cases, we determined the bounds by hand, with success for
most of them. This is a fastidious and error-prone work. For functions (e. g.
memcpy) from the glibc, we considered the source codes found on the GNU
web site.

For some functions, we have found several possible sets of loop bounds
(e. g. the bounds for loop1 and loop2 are either x and y, or x′ and y′ respec-
tively). This cannot be directly specified to OTAWA. In such cases, we have
added appropriate constraints on the sum of iterations of both loops.

Difficulties related to the Challenge questions. Several questions
required considering specific switch cases. Our simple flow facts description
language does not support this kind of annotations. We added hand-written
constraints to the integer linear program. It seems fastidious but in practice

11www.otawa.fr
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it is quite easy thanks to an efficient CFG displayer that shows various
information like basic block numbers, branch directions, related source code
lines, etc.

Problem 3b for debie1 raised the difficulty mentioned above since it im-
plied that one of two identical loops ends after one iteration instead of
processing to the end value. We had to hand-write additional constraints.

2.7 SWEET (written by J. Gustafsson and N. M. Islam)

SWEET (Swedish WCET Analysis Tool) is a WCET analysis research tool
from MDH. It has a standard WCET tool architecture, consisting of a pro-
gram flow analysis, a low-level analysis, and a WCET estimate calculation.

SWEET analyzes the intermediate format ALF (Gustafsson et al. 2009).
ALF can represent code on source-, intermediate- and binary level through
relatively direct translations. Given a code format, SWEET can perform
a WCET analysis for it if there is a translator into ALF. Currently, two
translators exist: a translator from C to ALF from TU Vienna, and an
experimental translator from PowerPC binaries. The first translator enables
SWEET to perform source-level WCET analysis. This translator has been
used in the WCET Challenge.

The current focus of SWEET is on automatic program flow analysis,
where constraints on the program flow are detected. SWEET’s program
flow analysis is called abstract execution (Gustafsson, Ermedahl, Sandberg,
and Lisper 2006). This analysis is input-sensitive, meaning that it can take
restrictions on program input values into account to produce tighter flow
constraints. Abstract execution can compute a wide ranges of program flow
constraints, ranging from simple loop bounds to complex infeasible path
constraints. The constraints can be context-sensitive, to allow for greater
precision.

SWEET can handle ISO C programs including pointers, and unstruc-
tured code. It has a large set of options for fine-tuning the analysis. It has
an annotation language, where the user can provide additional information
that the automatic analysis for some reason fails to derive.

Since SWEET does not support the target processors in the WCET
Challenge 2011, we have only performed source-level program flow analysis.
We restricted the analysis to PapaBench; debie1 was excluded due to lack
of time, and the Daimler code was excluded since we anticipated problems
for the students performing the analysis on the Daimler code to use our
tool. In particular, the C to ALF translator is hard to install due to its
many dependencies to different software packages. We also know by expe-
rience that production source code for embedded systems can pose many
problems for source-level analysis tools, since such code often stretches the
C standard (Lisper et al. 2010).
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2.7.1 The flow analysis problems

We were able to obtain answers to all six PapaBench flow analysis problems.
In particular, SWEET managed to find bounds also for the floating-point
controlled loops in problems A1, and A2a. Due to the input-sensitivity of
SWEET’s flow analysis, we were able to derive bounds for these that are
conditional on certain input values. These bounds are more precise than
bounds that have to be valid for all possible input value combinations. The
conditions, in the form of input ranges for certain input variables, were found
by a search running SWEET with different input ranges for these variables.
Interestingly, for problem A2a our analysis also found a possible division by
zero if the input variable estimator_hspeed_mod is zero. If this variable
indeed can assume this value, then there is a potential bug in PapaBench.

For some problems we had to tweak the code, or take some other mea-
sures, to make the analysis go through. For problem A3, we had to remove
the “inline” keyword at three places since our C to ALF translator did not
accept this use of the keyword. The code for problem F1b contains an infi-
nite loop: we had to patch the code to make this loop terminate to perform
the analysis.

At some places in the PapaBench code, absolute addresses are referenced.
Such references are problematic when analyzing unlinked source code, since
potentially any program variable can be allocated to that address when the
code is linked. Thus a safe analysis must assume that the absolute address
can be aliased with any program variable, and this is indeed what SWEET
assumes by default. However, this will typically lead to a very imprecise
analysis. To remedy this, we equipped SWEET with a mode where it as-
sumes that all absolute addresses are distinct from all unallocated program
variables. This is often a reasonable assumption, since absolute addresses
typically are used to access I/O ports and similar which are distinct from
data memory. In this mode, the analysis also assumes that absolute ad-
dresses always hold the abstract TOP value (no information about its pos-
sible value), since the value of input ports and similar can be altered from
outside the program. In all but very unusual situations, an analysis resting
on these assumptions should be safe.

2.7.2 Conclusions, and lessons learned

SWEET was able to solve all six program flow analysis problems posed for
PapaBench automatically. Notably, these problems include loops that are
controlled by floating-point variables. We had to tweak the source code at
some places to make all analyses go through: however, these tweaks were
necessitated by current limitations in translator and analysis tool that are
not of fundamental nature, and fixing them should be a mere matter of
engineering.
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2.8 TimeWeaver (written by S. Wegener and D. Kästner)

AbsInt’s TimeWeaver is a measurement-based timing estimation tool. It
can be used for any processor with NEXUS-like tracing facilities12, i.e. with
hardware support for non-invasive tracing mechanisms. TimeWeaver’s main
focus is not timing verification but exploring the worst-case timing behavior
on actual hardware and identifying hot-spots for program optimizations.

The main design goal for TimeWeaver was simplicity. After specifying
the set of input traces and the analysis starting point, TimeWeaver is able
to compute a WCET estimate in a fully automatic way. All the needed
information is taken from the measurements. At the current point of time,
no additional knowledge can be added by annotations. If for example a
loop has at most five iterations in the traces, but the assumption is that
the particular loop has a bound of ten iterations, the analysis is only able
to use the bound of five. Unfortunately, this hampers the comparability of
TimeWeaver with other WCET tools, but on the other hand, it eases the
use of TimeWeaver.

To compute a WCET estimate, an ILP is constructed from the traces
which represents the dynamic control-flow graph as observed by the mea-
surements. Loop bounds and time stamps are also extracted from the traces.

2.8.1 Adapting TimeWeaver to the proposed common target ar-
chitectures

As TimeWeaver works on NEXUS traces, only the MPC5554 was considered
as target. For this processor, a prototype already existed. This prototype
has been extended to handle incomplete traces. Moreover, the handling of
routines with multiple exits has been improved.

2.8.2 Analysis of the debie1 benchmark

The debie1 benchmark was the only one which was analyzed with TimeWeaver
because it was the only one available for the MPC5554. Since TimeWeaver
is a measurement-based tool, the quality of the results depends heavily on
the quality of the input traces. Unfortunately, the measurement solution
used to get the traces showed some unforeseen problems (see next section).
No comparable results were therefore computed by TimeWeaver.

2.8.3 Trace generation problems

The first problem was the lack of automation support of the rather old
tracing equipment available at AbsInt. Producing several thousand traces13

12http://www.nexus5001.org/
13According to Niklas Holsti, the test harness triggers about 52500 individual task invoca-

tions.
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for each task invocation manually one by one would have been a huge effort
and was not considered as a practical option. Instead, we tried to trace the
harness part as a whole.

This approach uncovered two other problems. First, the distinction be-
tween the various subquestions was not possible with the large traces be-
cause the NEXUS traces contain only instruction addresses and timestamps.
Thus, only estimates for the entire tasks could be computed, without tak-
ing the input constraints into account. Second, the trace buffer of the used
measurement equipment is of only limited size. Thus sometimes the traces
ended prematurely and no full path coverage was achieved.

2.8.4 Comments on the WCET Tool Challenge

For the next incarnations of the Challenge, we believe that having a stan-
dard set of measurements would be a tremendous advantage. Then, all
measurement-based tools could use the same input, thus enabling more room
for comparison. Moreover, having traces of the worst-case paths would also
ease the comparison between the actual WCET and the computed estimates.
Last but not least, this would prevent the participants from suffering from
the same problems we had.

2.9 TuBound (written by Adrian Prantl and Jakob Zwirch-
mayr)

TuBound is a research prototype WCET analysis and program development
tool-chain (Prantl, Knoop, Schordan, and Triska 2008) from Vienna Uni-
versity of Technology, built on top of libraries, frameworks and tools for
program analysis and transformation. Flow information is acquired and an-
notated (either supplied by the user or inferred by an analyzer or a software
model checker) at source code level. TuBound’s loop bound analysis compo-
nent was recently extended by SMT reasoning to rewrite multi-path loops
into single-path ones. Additionally, certain classes of single-path loops are
translated into a set of recurrence relations over program variables, which
are then solved by a pattern-based recurrence solving algorithm. The ex-
tension is denoted r-TuBound and described in more detail by Knoop et
al. (2011b, 2011a).

The gathered flow information is conjointly transformed within the de-
velopment tool chain. The transformed annotations are further used by the
WCET analyzer to calculate the WCET.

TuBound combines a C/C++ source-to-source transformer (the ROSE
compiler framework), static analysis libraries (SATIrE, TERMITE), used to
implement a forward-directed data flow interval analysis, a points-to analy-
sis and a loop bound analysis, a WCET-aware C compiler (based on GNU C
compiler 2.7.2.1 ported to the Infineon C167 architecture with added WCET
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analysis functionality), and a static WCET analysis tool. The WCET anal-
ysis tool currently integrated into the TuBound tool-chain is Calc wcet 167,
a static WCET analysis tool that supports the Infineon C167 as target pro-
cessor. Further details about TuBound can be found in (Prantl, Schordan,
and Knoop 2008; Prantl, Knoop, Schordan, and Triska 2008).

2.9.1 TuBound—Target Architecture

TuBound currently only supports the Infineon C167 architecture, described
in Sec. A.4).

2.9.2 TuBound Problems with Benchmarks

General In some cases it was not possible to annotate the input con-
straints because there is no support for them in TuBound. For example,
TuBound supports neither path annotations specifying “the first run” (or
in general the xth run), nor constraints that specify that “function f is ex-
ecuted once before g.” Additionally, the interval analysis does not support
arbitrary user supplied value annotations. Some of the input constraints
can nevertheless be annotated manually. For the cases where the input
constraints could not be annotated fully, we report the worst-case result.
Therefore, for example, when the WCET of “the first run” of a function is
asked for, we calculate the WCET of the function and use it as result. If
there are constrained inputs that we cannot model, we again compute the
(general) WCET of this function and report it as an over-approximation of
the WCET of the run in question.

Another difficulty stems from the supplied assembler code: we cannot
perform WCET calculation for the assembler code, because we do not sup-
port the target architecture. Therefore we could not, for example, find out
the WCET of interrupt routine __vector_10.

Another feature TuBound is still missing is floating point support: in-
terval analysis does not consider float values; those are used, for example,
in parts of the PapaBench inputs.

Tool Challenge The upper loop bound problems in PapaBench all in-
volved floats, which we do not handle in our interval analysis, even though
in principle the loops could be bound by our loop analyzers.

The evaluation of the tool on industry benchmarks at Daimler showed
the need for a shippable binary version of TuBound, as the compilation and
installation effort is quite high.

Additionally, there are portability issues in TuBound that need to be
addressed (e. g. hard-coded paths). These issues are not of utmost impor-
tance, as TuBound is still a research prototype. Nevertheless it would be
beneficial to allow outside evaluation by non-experts/developers.
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Figure 2: Tools and compilation, optimization, analysis, and build flow for
JOP.

2.10 WCA (written by B. Huber, W. Puffitsch and M. Schoe-
berl)

The WCA tool (Schoeberl, Puffitsch, Pedersen, and Huber 2010) from Vi-
enna University of Technology and DTU is a static WCET analysis tool for
processors executing Java bytecode, currently only supporting JOP (Schoe-
berl 2008). The input to the analysis tool are Java class files, along with
information on the processor configuration. The latter consists of hardware
parameters, such as cache sizes and memory access timings, and of the mi-
crocode assembler code for each bytecode.

Figure 2 gives an overview of the tools and the build and analysis flow.
Java source, with optional loop bound annotations, is compiled with a stan-
dard Java compiler to Java bytecode. The optional optimizer uses bytecode
as input and produces bytecode. The bytecode is the input for the WCA
tool that produces reports in HTML. WCA also reads the Java source to
extract annotations. The bytecode is also the input for the tool JOPizer to
generate a linked executable, which is downloaded to JOP.

For the high-level path analysis, bytecode has several advantages com-
pared to machine code. Most type information is still present in bytecode,
even automated decompilation is feasible. In particular, it is easy to auto-
matically obtain control flow graphs from bytecode. The possible targets for
indirect branches (switch) are specified in the class file. Instead of indirect
function calls, bytecode solely relies on dynamic method dispatch.

Determining the methods possibly executed due to a virtual invocation
amounts to determining the dynamic type of the receiving object. WCA
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includes a data flow analysis (DFA) to determine precise dynamic types of
objects, which is also used to prune the call graph. Additionally, the DFA
computes bounds on the range of values. This information is used for a
simple loop bound analysis, which makes it unnecessary to manually analyze
and annotate many loops rates. Manual loop bounds may be provided at
the source code level. The annotation language supports bounds relative to
outer loops and symbolic expressions. In particular, it is possible to refer to
Java constants in loop bound expressions, which reduces the maintenance
burden considerably.

The pipeline analysis for JOP is relatively straightforward. One dis-
tinguishing feature of WCA is that it derives a symbolic formula for the
worst-case execution time of bytecode instructions automatically. To this
end, the microcode sequence executed for a bytecode is inspected. The anal-
ysis composes a formula which takes explicitly hidden memory latencies and
method cache accesses into account.

WCA also includes a static analysis for JOP’s method cache. It imple-
ments a scope-based persistence analysis for the N -block method cache with
FIFO replacement. This analysis inspects program fragments, and tries to
prove that, within one fragment, at most N cache blocks are accessed. If
this is indeed the case, method cache costs only need to be accounted for
once for a method accessed within the fragment. This is encoded in the
IPET formulation, using a standard technique adding cache miss and cache
hit variables.

Although WCA is a command line tool, it produces annotated listings
of Java code, which can be used to inspect the worst-case path. As we
maintain relatively precise bytecode to source code line mappings, this can
be done on the Java source code.

The combination of WCA and JOP is a little bit different from the
other tools participating in the Challenge as we support Java instead of
C. Therefore, we had to port the benchmarks to Java. Furthermore, the
different languages and the different execution platform make is problematic
to compare WCA with the other tools.

2.10.1 Porting the Benchmarks to Java

While we could reuse the Java port of Papabench from Kalibera et al. (2010),
the debie1 benchmark was ported by ourselves. Unfortunately, the port
of Papabench is incomplete. As we did not want to deviate too far from
the publicly available version of the benchmark, we fixed only a few minor
issues, but left the general implementation of the benchmark unchanged.
One notable change in the implementation was the use of scoped memory to
enable dynamic memory allocation while avoiding garbage collection. Due
to the incompleteness of the benchmark, we were only able to answer a few
questions posed by the Challenge. In order to provide a more complete
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picture, we include the analyzed and observed WCETs of the benchmark’s
tasks in Table 3.

debie1 was ported as far as necessary to properly execute the test cases
provided in the harness. However, some functionality was omitted as it
would not have been possible to test the respective code properly.

During porting, we encountered a few advantages and disadvantages
of Java. In C, structs are laid out flat in memory and can be accessed
byte for byte through a pointer. In Java, accessing an object byte for byte
requires manual mapping of byte indices to fields, which is considerably more
expensive. A related issue are accesses to multidimensional arrays. While in
C it is possible to use a unidimensional index to access elements in such an
array, this is not possible in Java. For accesses to a multidimensional array
in Java, it is necessary to compute the correct index for each dimension,
which requires a division and remainder operations. If strength reduction is
not possible, this introduces severe overheads.

Java has a clear concept for modularization. While it is still possible to
write poorly modularized code, the object orientation of Java serves as gentle
reminder to programmers. Also, being able to control the visibility of fields
encourages clean interfaces. Some of the arguments above are against Java
in real-time systems due to the considerable overhead inherited by an object-
oriented language. However, it should be noted that Java with its strong
typing and runtime checks is a safer language than C and therefore, in the
opinion of the authors, an interesting choice for safety-critical applications.

2.10.2 Problems and Insights

debie1 The main problem in the analysis of debie1 (in particular Problem
1 and Problem 3) is that methods tend to be very long. We usually as-
sume that in safety-critical code, methods are kept short, as recommended
by safety-critical programming guidelines (e. g., (Holzmann 2006)). In our
“literal” port of the debie1 benchmark to Java, there are many very long
methods along with very large switch statements. First, the method cache
of JOP can be rather inefficient for very long methods. Secondly, our cache
analysis uses rather coarse-grained scopes (methods only) for persistence
analysis, and therefore delivers poor results for Problem 1 and Problem 3.
From the analysis point of view, considering subgraphs as persistency scopes
would considerably improve the analysis. Another attractive option is to au-
tomatically refactor large methods into smaller ones. A related problem is
the use of switch statements to implement what usually would be realized
using dynamic dispatch in Java. This leads to very large methods, which
severely impact the method cache performance, even in the average case.
Again, refactoring to more idiomatic code (Command Pattern (Gamma,
Helm, Johnson, and Vlissides 1994)) would resolve this problem.

We replaced all the preprocessor-based configuration in the original de-
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Problem all-miss all-hit WCET Measured

(1) 19111 12719 17717 6977
(2a-2c) 9960 7385 9104 6601
(3a-3c) 158549 120561 132353 67666
(4a-4d) 32150 24419 26863 24652
(5a-5b) 1661 × 103 1371 × 103 1382 × 103 1289 × 103

Table 2: Analysis results for jDebie problems (in clock cycles).

bie1 code by methods of a Java interface, which abstracts the actual hard-
ware. In order to eliminate the resulting efficiency penalty, it is necessary to
have an optimizer to remove this indirection once the configuration of the
hardware platform is fixed. An optimizer for Java bytecode is currently un-
der development, which includes method inlining. As this optimizer is still
under development, the execution times for the interrupt handling routines
are very high.

On the positive side, we used the chance to improve our annotation lan-
guage, which now supports arbitrary expressions involving Java constants.
For example, the annotation for the checksum calculation is

// @WCA loop <= union(CHECK_SIZE, 1 + CODE_MEMORY_END

// - MAX_CHECKSUM_COUNT * CHECK_SIZE)

where CHECK SIZE, etc. are Java constants defined in the code.
The results for debie1 are given in Table 2. To show the effectiveness of

the method cache analysis we also show analysis results with the assumption
of all misses in the method cache and all hits in the method cache (in the
second and third columns). The WCET analysis result must lie between
these extremes.

For Problem 6, we did not find meaningful flow constraints, and thus
failed to determine a reasonable WCET bound. We did not work on the
flow analysis subproblems, lacking support for artificial flow constraints, and
only analyzed the worst-case path for each problem. Although we prefer
to minimize the use of manual annotations, after working on the debie1
problem set we believe an interactive tool to explore different paths would
be a valuable addition to WCA.

Papabench Papabench was relatively straightforward to analyze, even
though our value analysis could not cope with the multi-threaded code. In
fact, only two (symbolic) loop bounds had to be annotated in the application
code. However, the use of floating-point operations proved problematic. On
the one hand several loops with non-obvious bounds had to be annotated
in the software implementations of these operations, on the other hand the
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Task all-miss all-hit WCET Measured

AltitudeControl 33078 27978 29054 23667
ClimbControl 139987 120938 126515 105926
RadioControl 69216 60198 64266 2444
Stabilization 168261 150349 156974 131910
LinkFBWSend 21 (empty) 0
Reporting 21 (empty) 0
Navigation cyclic CFG 3057905

CheckMega128Values 9710 8618 9710 9417
SendDataToAutopilot 11692 10104 11574 393
TestPPM 4633 3341 4629 610
CheckFailsafe cyclic CFG 515

Table 3: Analysis results for jPapabench tasks (in clock cycles).

resulting execution times were less than satisfying, both in analysis and
measurements. Although we were able to correctly bound the execution
times for the floating-point operations, we do not think that such code is
suitable for embedded applications. Figure 3 shows the analysis results and
execution time measurements.

3 Results

The full set of results is too large to be presented here; please refer to the
Wiki. Table 4 shows the number of analysis problems for each WCC’11
benchmark, the number of flow-analysis and WCET-analysis questions to
be answered, and the number of questions answered by each participating
tool. If a tool answers the same question for several target processors, it
still counts as only one answer.

For the three tools that analyzed the simple processor target (ARM7),
Table 5 lists the specific results. As can be seen, most deviations are less
than 50%. However, there are notable exceptions that probably deserve
further investigation.

4 The Daimler Experiment (written by E. Ploed-
ereder, F. Krause, S. Gepperth, and W. Fellger)

WCC’11 as described so far had the producers of applicable tools bring their
intimate knowledge to bear in processing previously available benchmarks.
In the Daimler experiment, students of the University of Stuttgart applied
the tools to proprietary industrial software (see Sec. 1.4.3). The students
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Benchmark debie1 PapaBench Daimler
Type of question Flow WCET Flow WCET WCET
Number of questions 15 22 6 11 4

aiT 15 22 3 11 4
Astrée 15
Bound-T 14 18 5 11
Fortas 5
METAMOC
OTAWA 8 15 5 11 4
SWEET 6
TimeWeaver 6
TuBound 15 18 1 10
WCA 13 11

Table 4: Number of posed and answered analysis problems in WCC’11.

had no prior knowledge of either the tools or the analyzed software. They
were remotely supported by the tool providers and had access to Daimler
employees knowledgeable about the analyzed system.

4.1 The Tools

The target architecture MPC5553 is supported by few of the tools partic-
ipating in the WCC’11. The experiment was conducted with AbsInt’s aiT
and with OTAWA, as these tools are the only ones that support the target
architecture. It should be noted that OTAWA only supports the MPC 5554
architecture, which is one reason for the somewhat surprising divergence in
the results obtained by the two tools. As a third tool, TuBound had regis-
tered for the experiment but we did not succeed in its on-site installation.

4.2 Experiences with the Two Tools

The analyzed software contains fault branches trapping in infinite loops.
Obviously, this cannot be accommodated in a WCET calculation. The fault
branches needed to be filtered out to obtain meaningful results.

With aiT the respective branches and function calls leading to infinite
loops could be excluded from the WCET calculation. With OTAWA, un-
fortunately no approach could be identified to achieve such exclusion. En-
countering such an infinite loop sometimes led OTAWA itself into an infinite
loop, requiring a forced termination. The entry point TASK was a case in
point. Hence it could not be included in the comparison of WCET results.

Apart from this, OTAWA frequently terminated with a segmentation
fault when analyzing the Daimler code. It also terminated the Eclipse IDE
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debie1 Estimated clock cycles
aiT Bound-T OTAWA

1 342 333 332
2a 100 93 139
2b 144 143 139
2c 144 138 139
3a 2664 2692 4101
3b 11404 11402 23829
3c 11664 11662 27117
4a 2352 2343 522460
4b 215 214 210
4c 196 187 195
4d 199 190 730
5a T1 4154 5223 5329
5a T2 172 42
5b T1 38798 39825 55883
5b T2 180 42
6a T1 22203 22765
6a T2 98
6b 23100 23741
6c 40143 42285
6d 24184 24254
6e T1 1101107 372148
6e T2 158

Papa- Estimated clock cycles
Bench aiT Bound-T OTAWA

A1 1716 1660 1358
A2a 27785 31699 32735
A2b 31482 37181 38112
A3 T1 3404 3849 1119
A3 T2 8938 10484 9863
A4 4182 5986 5953
A5 5435 5131 4782
A6 12051 17378 17422
F1a 4207 7914 7824
F1b 45 43 40
F2 102 100 102

Table 5: Results for WCET analysis questions for the ARM7. The estimated
clock cycles refer to the results reported by aiT, Bound-T, and OTAWA.
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if the plugin was used. Despite best efforts from both Daimler and OTAWA
supporters, these problems could not be resolved in time. A suspected cause
might be related to what OTAWA calls “unresolved controls,” potential
branch instructions in the code that cannot be automatically resolved. They
occurred very frequently in the Daimler code, and we suspect that a “wrong”
choice was taken from the available substitutes.

Absint’s aiT was pretty straightforward to use and did not cause any
major problems that could not be dealt with quickly; in particular, it could
deal with almost all branches without further interaction. We checked the
resulting call graphs for overestimation of loop bounds - which were mostly
automatically computed - but they were all reasonable.

OTAWA itself does not compute loop boundaries, so they needed to be
set statically for every loop. It should be noted that OTAWA is combined
with an external tool called “oRange” for this job which we did not get to
experiment with because of the general stability issues.

4.3 Results

The comparative results consist of three data sets, two for aiT and one for
OTAWA. These data sets presented in Table 6 are:

• aiT configured for the real hardware. This configuration yields proper
WCET results for the hardware the code is compiled for.

• aiT configured for comparison to OTAWA results. The hardware con-
figuration is changed to assume the same parameters OTAWA uses in
its MPC 5554 configuration.

• OTAWA with MPC5554 configuration. As OTAWA does not support
the exact hardware configuration the code is written for, this configu-
ration is as close as the experiment could get to the real hardware.

OTAWA offers predefined configuration “scripts” with very few options,
while aiT presents an almost overwhelming range of settings. For aiT, we
made use of the option to initialize the CPU settings from actual CPU status
registers for the real hardware configuration.

The loop boundaries used for OTAWA were slightly overestimated com-
pared to the ones used for aiT, as each loop count can only be set globally,
not per call to the containing function. The context sensitivity of loop bound
estimation in aiT is particularly noticeable in CALC2, the only entry point
for which the OTAWA result is higher than the corresponding aiT result.

4.4 Conclusion on the Daimler experiment

In order to arrive at comparable numbers, we reran aiT with a CPU con-
figuration approximating the configuration used by OTAWA to get any-
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Entry point aiT OTAWA
Compiled hardware OTAWA-like

configuration configuration

INTERR 524 204 113
INIT 1055 494 218
CALC1 2124 830 722
CALC2 16507 6218 7991

Table 6: WCET computation results for the Daimler code experiment.

where near comparable results. While these were in fact significantly closer,
OTAWA still tended to give lower numbers than aiT.

In searching for causes of the remaining divergence, we traced the esti-
mates down to the individual basic blocks. Even at this level, the estimates
by OTAWA remained consistently lower, which makes it very likely that
there are hidden differences in the CPU modeling of the two tools that ac-
count for the spread in numbers. The OTAWA support concurred in this
being a likely cause.

Unfortunately, no actual hardware or faithful emulator was available
to the experiment in order to measure actual performance and compare it
to the predictions in order to determine how close the predictions came
to reality and whether any numbers were underestimations for the actual
hardware. AbsInt had hardware available and undertook a test of this hy-
pothesis. AbsInt reports on the results in Sec. 2.1.3. This report supported
our impression that it is very important to ensure a precise match of the de-
tailed hardware description to the actual hardware in arriving at meaningful
WCET answers that reflect reality or that allow a comparision of numbers
obtained by different tools.

5 Conclusions

One of the goals formulated in the conclusions of the last Challenge, WCC’08
(Holsti et al. 2008), was “to motivate the 2006 participants to rejoin the
Challenge, without losing the new 2008 participants.” We have adopted this
goal, and wanted to provide a setting that would be attractive to as many
participants as possible, irrespective of whether or not they had partici-
pated in earlier Challenges. Thus, we aimed for a sense of continuity of the
Challenge, to allow previous participants to re-use some of their previous in-
vestments, and for a sense of openness, to allow new participants to join the
Challenge even if they could not comply with the suggested targets (ARM7
or MPC) or programming language (C). We also followed the suggestion of
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the WCC’08 report to include PapaBench, already used in WCC’06 but not
in WCC’08, again in WCC’11. We are thus happy to have had ten participat-
ing tools, up from five in 2006 and six in 2008. The ten 2011 participants
include three 2006 participants (aiT, Bound-T, and SWEET), three 2008
participants (Bound-T again, OTAWA, and TuBound) and five first-time
participants (Astrée, Fortas, METAMOC, TimeWeaver, and WCA).

One price of the openness is reduced comparability of results. Ultimately,
WCET analysis is about numbers, which should supply a natural metric to
compare the tools. However, the presence of numerical results may also give
a false sense of objectivity, and may tempt to compare apples with oranges.
All participants provided numerical results, but these involved a range of
target architectures, tool chains, and manual annotation effort. For future
editions of the benchmark, it would be nice if more convergence could be
reached here, at least for a “simple” processor/benchmark setting.

Furthermore, while we are convinced that all participants do their best
to produce safe results (ie., to not underestimate the WCET), the absence
of validated “true” WCETs also leaves the possibility of results that are
(unintentionally) too good to be true. It is not clear how to circumvent this
problem in practice. Then again, this is an issue that affects not only the
WCC, but the whole WCET analysis discipline. Furthermore, the WCC
might help the tool designers to uncover potential points for improvements
in their tools (not only with respect to tightness, but also with respect to
safety), which is just the point of the Challenge. Ideally, future editions of
the Challenge would not only include safe estimates that strive for tightness
and bound the true WCET from above (where lower is better), but would
also include maximal established measurements that bound the true WCET
from below (where higher is better). This still would not prove the safety of
the WCET estimates, but could serve as a minimal consistency check.

One of the assets of WCC’11, the availability of an industrial code, also
posed one of the organizational challenges. It turned out non-trivial to align
the non-disclosure requirements and architectural constraints of the code
with the capabilities of the participating tools. It would be nice if a future
Challenge would have more participants for an industrial-size benchmark
and the “complex processor” category.

The report on the last Challenge concluded (Holsti et al. 2008): “The
WCC’08 organizers suggest that the Challenge should be defined as a contin-
uous process, allowing the addition of benchmarks, participants, and anal-
ysis results at any time, punctuated by an annual deadline. At the annual
deadline, a snapshot of the results is taken and becomes the result of the
Challenge for that year.” So far, this goal has turned out a bit too ambi-
tious, but we hope with this Challenge to have made another step towards
maturity of the Challenge and, more importantly, the involved tools. We
certainly hope that there will be another WCC’1X Challenge, and hope
that it will find a good balance between continuing established practice and
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adding new elements.
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Appendix

A The Target Processors

After polling the potential participants, we decided to suggest two com-
mon target processors for WCC’11, a “simple” processor and a “complex”
processor. However, participants were welcome to use other processors as
well.

A.1 The “Simple” Processor: ARM7

As “simple” processor, the same processor was selected as in WCC’08, the
ARM7, as e. g. on the LPC2138 board from NXP Semiconductor. Its MAM
(Memory Acceleration Module) was de-activated. The following is a brief
description of the ARM7, based on the WCC’08 report.

The ARM7 (ARM 1995) is a simple, deterministic processor without
caches and complex pipelines. It is a 32-bit pipelined RISC architecture
with a single (von Neumann) address space. All basic ARM7 instructions
are 32 bits long. Some ARM7 devices support the alternative THUMB in-
struction set, with 16-bit instructions, but this was not used in WCC’11.
The ARM7 processor has 16 general registers of 32 bits. Register 15 is the
Program Counter. Thus, when this register is used as a source operand it
has a static value, and if it is a destination operand the instruction acts as
a branch. Register 14 is designated as the “link register” to hold the return
address when a subprogram call occurs. There are no specific call/return
instructions; any instruction sequence that has the desired effect can be
used. This makes it harder for static analysis to detect call points and re-
turn points in ARM7 machine code. The timing of ARM7 instructions is
basically deterministic. Each instruction is documented as taking a cer-
tain number of “incremental” execution cycles of three kinds: “sequential”
and “non-sequential” memory-access cycles and “internal” processor cycles.
The actual duration of a memory-access cycle can depend on the memory
subsystem. The term “incremental” refers to the pipelining of instructions,
but the pipeline is a simple linear one, and the total execution-time of an
instruction sequence is generally the sum of the incremental times of the
instructions.

The LPC2138 chip The NXP LPC2138 implements the ARM7 architec-
ture as a microcontroller with 512 KiB of on-chip flash memory starting at
address zero and usually storing code, and 32 KiB of static on-chip random-
access memory (SRAM) starting at address 0x4000 0000 and usually storing
variable data. There is no off-chip memory interface, only peripheral I/O
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(including, however, I2C, SPI, and SSP serial interfaces that can drive mem-
ory units).

The on-chip SRAM has a single-cycle (no-wait) access time at any clock
frequency. The on-chip flash allows single-cycle access only up to 20 MHz
clock frequency. At higher clock frequencies, up to the LPC2138 maximum
of 60 MHz, the flash needs wait cycles. This can delay instruction fetching
and other flash-data access. The LPC2138 contains the aforementioned
device called the Memory Acceleration Module (MAM) that reduces this
delay by a combination of caching and prefetching; however, as already
mentioned, we suggested to de-activate the MAM.

The on-chip peripherals in the LPC2138 connect to a VLSI Peripheral
Bus (VPB) which connects to the Advanced High-performance Bus (AHB)
through an AHB-VPB bridge. This bus hierarchy causes some delay when
the ARM7 core accesses a peripheral register through the AHB. If the VPB
is configured to run at a lower clock frequency than the ARM7 core this
delay is variable because it depends on the phase of the VPB clock when
the access occurs.

The programming tools The IF-DEV-LPC kit from iSYSTEM came
with an integrated development environment called WinIDEA and a GNU
cross-compiler and linker. The distributed benchmark binaries for WCC’11
were created with Build 118 of these tools using gcc-4.2.214. The IF-DEV-
LPC kit has an USB connection to the controlling PC and internally uses
JTAG to access the LPC2138. WinIDEA supports debugging with break-
points, memory inspections, and so on.

A.2 The “Complex” Processor: MPC5553/5554

The Freescale MPC5553/MPC5554 micro-controllers implement the Pow-
erPC Book E instruction set. The Book E instruction set adapts the normal
PowerPC ISA to the special needs of embedded systems. The normal float-
ing point instructions are replaced by digital signal processing instructions.

Both micro-controllers have a two-level memory hierarchy. They use a
unified cache (8 KB on the MPC5553, 32 KB on the MPC5554) to accelerate
the accesses to the internal SRAM and Flash memory. Additionally, they
support the use of external memory. The memory management unit has
a 32-entry translation look-aside buffer. The load/store subsystem is fully
pipelined and an 8-entry store buffer is used to accelerate the instruction
throughput.

The unified cache is 2-way set associative on the MPC5553 and 8-way
set associative on the MPC5554. The cache can be locked on a per way
basis. Moreover, a way can be declared as instruction or data cache only.

14http://www.isystem.si/SWUpdates/Setup_IFDEV_9_7_118/iFDEVSetup.exe
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As another acceleration mechanism, the micro-controllers support branch
prediction. The processors run at a clock speed of up to 132 MHz.

Various peripherals can be attached to the micro-controllers, for exam-
ple by using the FlexCAN bus. The MPC55xx micro-controllers support
debugging through the IEEE-ISTO 5001-2003 NEXUS interface and the
IEEE 1149.1 JTAG controller.

A.3 The TriCore 1796

The TriCore 1796 and the TriBoard TC1796 were the chosen target of the
FORTAS tool (see Sec. 2.4). The TC1796 is based on the 32-bit TriCore 1.3
load/store architecture. We focus on the features that we consider partic-
ularly relevant for execution timing and measurement. For details, please
refer to the processor manual (Infineon 2007).

The TC1796 uses a Harvard architecture with separate buses to program
and data memory, i.e., instruction fetching can be performed in parallel with
data accesses. The 4GB address space is partitioned into 16 equally-sized
segments. For the challenge, program code was stored in segment 8, which
provides cached memory accesses via the External Bus Unit (EBU). The
instruction cache is two-way set-associative with LRU replacement strategy.
It has a line size of 256 bits. The cache can be globally invalidated and be
globally bypassed. Unaligned accesses crossing caches line is supported with
a penalty of 1 CPU cycle.

There is no data cache, but all data written by ST (store) or LDMST
(load-modify-store) instructions is buffered. The buffer content is written
to memory when the CPU and the Data Local Memory Bus are both idle.

Execution timing is also affected by the superscalar design. The TC1796
has a top-level pipeline consisting of an Instruction Fetch Unit, an Exe-
cution Unit and a General Purpose Register File. Within the execution
unit the pipeline splits into three parallel sub-pipelines: an Integer Pipeline,
which mainly handles data arithmetics and conditional jumps, a Load Store
Pipeline, which is mainly responsible for memory accesses, unconditional
jumps, calls and context switching, and a Loop Pipeline, which mainly han-
dles special loop instructions providing zero-overhead loops. Consequently,
up to three instructions can be issued and executed in parallel. Also, a
floating point unit is attached to the CPU as a coprocessor. Furthermore,
there is a static branch predictor that implements the following rules (In-
fineon 2003): Backward and short forward branches (16-bit branches with
positive displacement) are predicted taken. Non-short forward branches are
predicted not taken. The overhead of the different cases is summarized in
Table 7.

The TC1796 offers On-Chip Debug Support (OCDS) Level 1 and Level
2 for debugging and execution time measurement. OCDS Level 1 includes
a JTAG module, which can be used to download programs to the target
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Prediction Outcome Penalty (cycles)

not taken not taken 1
not taken taken 3
taken not taken 3
taken taken 2

Table 7: Branch penalties.

and to inject input data. Tracing is enabled via OCDS Level 2, a vendor-
specific variant of the Nexus IEEE-ISTO 5001-2003 standard interface15.
For the challenge, this interface was used to sample time-stamped program
flow information at each CPU cycle without exerting a probing effect. Code
instrumentation is not necessary.

Target Platform: TriBoard TC1796 We focus on those features par-
ticularly relevant for execution timing and measurement. Details can be
found in the board manual (Infineon 2005b).

The TriBoard is equipped with 4MB of Burst Flash memory and 1 MB
of asynchronous SRAM, which are both connected to the processing core
via the External Bus Unit of the processor, and these are the only devices
that are connected to the EBU. For the challenge, both program data and
program instructions were placed into the asynchronous SRAM area.

The Clock Generation Unit, which is controlled by an external crystal
oscillator, produces a clock signal fOSC at 20MHz. The CPU clock runs at
150MHz, and the system clock at 75MHz.

A.4 The C167

The Infineon C167 (more precisely, the C167CR) 16-Bit CMOS Single-Chip
Microcontroller has been used in the Challenge by TuBound, via the tool
Calc wcet 167 (see Sec. 2.9). It is a single-issue, in-order architecture with a
jump cache. The C16x family of microcontrollers targets real-time embed-
ded control applications and is optimized for high instruction throughput
and low response time to external interrupts. It combines features of both
RISC and CISC processors. Separate buses connect the program memory,
internal RAM, (external) peripherals and on-chip resources. The CPU is
clocked at 25/33 MHz allowing a 80/60 ns minimum instruction cycle time.
Details can be found in the manual (Infineon 2005a).

The core of the CPU consists of a for 4-stage instruction pipeline, a
16-bit ALU, dedicated SFRs, separate multiply, divide, bit-mask generator

15http://www.nexus5001.org/
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and barrel shifter units. Because of optimized hardware, most instructions
can be executed in one machine cycle. Instructions requiring more than
one cycle have been optimized. Branching, for example, requires only one
additional cycle when a branch is taken. The pipeline is extended by a
’Jump Cache’ that optimizes conditional jumps performed repeatedly in
loops: most branches taken in loops require no additional cycles.

The memory of the C167 is a Von Neumann architecture, code memory,
data memory, registers and IO ports are organized in the same 16MB linear
address space. Memory can be accessed byte-wise or word-wise. Particular
portions can be addressed bit-wise, which is supported by special instruc-
tions for bit-processing. A 2 KByte 16-bit wider internal RAM provides fast
access to registers, user data and system stack.

A.5 The JOP Architecture

JOP is a Java processor especially optimized for embedded real-time sys-
tems (Schoeberl 2008). The primary design target of JOP is time-predictable
execution of Java bytecodes, the instruction set of the Java virtual machine
(JVM). JOP is designed to enable WCET analysis at the bytecode level.
Several Java WCET tools target JOP; WCA (Schoeberl, Puffitsch, Peder-
sen, and Huber 2010), the WCET analysis tool that is part of the JOP
distribution, was used in the WCET Challenge 2011 (see Sec. 2.10). JOP
and WCA are available in open-source under the GNU GPL license.16

The JOP pipeline is as simple as the ARM7 pipeline. The main difference
is that a translation of bytecodes to a sequence of microcode instructions
is performed in hardware. Microcode instructions execute, as in standard
RISC pipelines, in a single cycle. Bytecode instructions can execute in
several cycles. The timing model for bytecode instructions is automatically
derived from the microcode assembler code by WCA.

Bytecode instructions usually execute in constant time. Only for in-
structions that access main memory the access time has to be modeled. In
WCA modeling of a simple SRAM memory is included and also a model of
a chip-multiprocessor version of JOP with TDMA based memory arbitra-
tion (Pitter and Schoeberl 2010).

JOP contains three caches: a stack cache for stack allocated local vari-
ables, a method cache for instructions, and an object cache for heap allocated
objects. The stack cache has to be large enough to hold the whole stack of
a thread. Spill and fill of the stack cache happens only on thread switch.
Therefore, a guaranteed hit in the stack cache can be assumed by WCA. The
method cache stores whole methods and is loaded on a miss on a method
invocation or on a return. WCA includes a static, scope-based persistence
analysis of the method cache. The analysis of the object cache (Huber,

16see http://www.jopwiki.com/Download
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Puffitsch, and Schoeberl 2011) is not yet completely integrated into WCA
and we assume misses on all object field accesses for the WCET Challenge.

With the method cache JOP is slightly more complex than the ARM7
target. The reference configuration of JOP uses a 4 KB method cache and
a 1 KB stack cache. The main memory is 32-bit, 1 MB of SRAM that has a
read access time of 2 clock cycles and a write access time of 3 clock cycles.
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