/ AbsInt Webinar
Release 16.10

AbsInt GmbH
I 2016

Agenda

= New features of Astrée (30min)

= New features of a3 (30min)
= StackAnalyzer
=ail
= TimingProfiler

€l Absint

Handling Absolute Addresses

Analyses no longer stop upon encountering undeclared
absolute addresses.

= Type-A alarm is raised, but not classified as definite runtime error.

= Suggestions for ASTREE absolute address directives are
provided.

= All values written to any undeclared absolute address are collected
and used for any read from an undeclared absolute address.

@<address> declarations are automatically translated to
ASTREE absolute address directives.

= Example: int i @0x1234;

€l Absint

@
Analysis of Concurrent Software

Astrée now also reports all potential deadlocks.
= New alarm category.
= Deadlock cycles are printed in the analyzer log.

New domain for precise handling of process priorities
including dynamic priorities, e.g., according to the Priority
Ceiling Protocol.

A new data flow view enables users to efficiently
explore data races.

The call graph view can now show all possible call paths
for accesses to global variables.

The wrapper generator now generates entry code using
__astree_create/start_process() and takes priorities into
account.

€l Absint

@
Analysis of Concurrent Software

= Alarm messages about data races now indicate
whether variable access is volatile and atomic.

= Atomicity of basic data types can be specified in the ABI
configuration.

= New option to suppress data race alarms on
volatile atomic variables.

Iock—fr&(/;ck—free
write read
volatile int X;

O

read/write data race is harmless if access is atomic

€l Absint

Astree Client (GUI)

Analyzed code lines with no errors nor type A/B/C alarms
are marked in green.

Exclamation marks = denote code lines with alarms or
notifications. Clicking on the exclamation mark opens all
findings from this line in the findings view.

Watch window functionality (invariants) available for lines
with blue line numbers.

Redesigned Reports view
= Directories and file names of report files can be freely chosen

Simplified configuration of rule checks
= Easy enabling/disabling rules according to MISRA categories

€l Absint

Reporting

Jenkins Continuous Integration plugin now available
New customizable HTML reports available

Percentage of 'proven statements' shown:

= Statement is considered proven if it is reached by the analyzer and
causes no error nor a type A/B/C alarm.

= Lines with only proven statements are colored green (see above).

Astrée XML result file format now has an XML schema
definition at
absint.com/dtd/astree-dax-report-configuration-16.10.xsd

€l Absint

Rule Checking

MISRA C:2012 Amendment 1 is now supported.
ISO/IEC TS 17961 C secure coding rules supported.
SEI Cert C supported (preliminary).

Many semantic MISRA rules now can be checked
without running the sound run-time error analysis
(skip-analysis=yes).
= 5 MISRA C:2004 rules and 4 MISRA C:2012 rules partially checked.
Example: "There shall be no unreachable code".

= 2 MISRA C:2004 rules and 2 MISRA C:2012 rules fully checked
(lower precision). Example: uninitialized variable access.

= 5 MISRA C:2004 rules and 6 MISRA C:2012 rules only checked with
activated analyzer (skip-analysis=no).
Eclipse plugin for Astrée rulechecker (KERCI) available
from Konzept Informationssysteme GmbH. ®
€l Absint

Further Improvements

= TargetLink Coupling

= TargetLink importer settings are now shared between
all clients.

= Missing sources files no longer added to the analysis
configuration.

= Data directory file can now be specified using a relative
path to the global base directory.

= The analyzer now supports pointers of different sizes, e.qg.,
near/far/huge pointers.

€l Absint

Agenda

v New features of Astrée (30min)

= New features of a3 (30min)
= StackAnalyzer
=ail
= TimingProfiler

10

€l Absint

11

O
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

12

@
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

13

O
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

14

O
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

15

O
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

16

O
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ¢

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

17

The a3 Jenkins Plug-In ¢
Provides automatic integration of TimingProfiler,
StackAnalyzer and aiT in the Continuous Integration

Framework Jenkins
One-click installation
Easy to configure
Fully integrated
Features:

= Configure an analyzer run as a Jenkins build step
= Launch an a3 analysis project

Automatically mark a build step as failed depending on
= Violated expectations in the analysis results
= Warnings/Errors in the analysis results (pedantic level)

Prints a compact result table and lists failed analysis items in the Jenkins Build output
Archives analysis reports directly in your Jenkins workspace
Access analysis results via the Jenkins web interface

€l Absint

18

@
New a3 Features in 16.10

a3 Workspaces
= Save complete analysis state & results (graph, statistics,...) for later review
= Workspace export in alauncher (Option: --export-workspace ws.apx)
Generating AIS annotations from
= Graph/GUI
= Message View (as annotation hints)
= AIS Editor

Loop Bound View in Statistics
= AIS annotation generation

Project File Generator from built-in Editor and Information Views
Stack area specification in GUI

a3 Jenkins Plugin ‘

Extended AIS2 annotations for

= [nitialization Value Analysis
= Handling Tail Calls

= New end/offset functor ﬁ Absint

= If ValueAnalyzer Add-On is available

- Collect Initializations

= Use initialization (value) analysis to collect
(pointer) variable initializations:

flx) Create
= WCET ltems (5)
(%) task_1ms_dhry

ﬂ Home

(7h task_5ms_CAN_ wcet
% Analysis graph
,/ task_Sms_CAN.ais

—
=
= Analyses

« Automatic annotations
(7 task_10ms_bs_math_ wcet

(74 1SR1_hwcheck_ wcet

\(\ Setup

(7} 1SR2_minmax_ wcet
= Stack ltems (5)

il task_1ms_dhry_ stack

Bl fask 5ms_CAN_stack

@ Infor mation

il task_10ms_bs_math_ stack
Bl ISR1_hwcheck_stack
Bl ISR2_minmax_stack

Hl init_va

@ o AIlS Dependencies

© H T
~~

OO =~ N)R =

T QA HHAC « >

AbsInt Scenarios Example

(C) AbsInt ﬁﬂgéW&ﬂGfé Intormatik GmbR

1le Tor value analysls

Ainit.ais ~

collect initialization:

"msg_length”, "reg_err_handler”, "can_msg_buffer"”, "reg _msg handlers”;

ﬁ Absint

New AIS2 Features (1)

= New types for collecting initialization values:
= For all structure members at once

collect initialization: ("<name>".);
= A/l variables of a certain type

collect initialization: type(void () *);
= A/l function pointer variables

collect initialization: type(function pointer);

20

€l Absint

New AIS2 Features (2)

= Annotating tail calls now more convenient
instruction <pp> tail calls: <targets>;
instead of

instruction <pp> {
calls: ...;
type: tail call;

21

€l Absint

22

New AIS2 Features (3)

= New functors available:

Use

end(<area>)

instead of address(<area>) + width(<area>) - 1

= Compute the offset of a structure field "data" in a global
structure variable "fTable" with the following functor:

offset(("fTable"."data"));

€l Absint

Zs

~ a3/Astrée Release Notes for 16.10

http://www.absint.com/releasenotes/a3/16.10/

http://www.absint.com/releasenotes/astree/16.10/

ﬁ Absint

http://www.absint.com/releasenotes/a3/16.10/
http://www.absint.com/releasenotes/astree/16.10/

€l Absint

email: info@absint.com
http://www.absint.com

