
StackAnalyzer

Proving the Absence of Stack Overflows

AbsInt GmbH

2012

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: tests and measurements

 Test end criteria unclear

 No full coverage possible

 ―Testing, in general, cannot show the absence of errors.‖ — DO-178B

 Access to physical hardware: high effort
due to limited availability and observability

2

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Stack Usage

 In safety-critical embedded

systems the stack is typically

the only dynamically managed

memory

 The stack is used to store

 Local variables

 Intermediate values

 Function parameters

 Function return addresses

3

End of reserved
stack space

Start of reserved
stack space

Stack frame
of current

function

Usable
stack
space

Stack pointer

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Static Analysis – an Overview

 General definition: results are only computed
from the program structure,
without executing the program under analysis

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug finders/bug hunters

 Cannot guarantee that all bugs are found

 Examples: Splint, Coverity CMC, Klocwork K7,…

 Sound semantics-based/abstract-interpretation–based

 Can guarantee that all bugs from the class under analysis are found

 Results valid for every possible program execution
with any possible input scenario

 Examples: aiT WCET Analyzer, StackAnalyzer, Astrée

4

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Abstract Interpretation

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency–precision
trade-off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by abstract interpretation.

 Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

5

Definitely
correct / in time definitely false

Definitely
correct / in time

potentially
false

Concrete
semantics

Abstract
semantics

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Aerospace: DO-178B/DO-178C

 ―Verification is not simply testing.
Testing, in general, cannot show the absence of errors.‖

 ―The general objectives of the software verification process
are to verify that the requirements of the system level,
the architecture level, the source code level and the executable
object code level are satisfied, and that the means used to satisfy
these objectives are technically correct and complete.‖

 The DO-178C is a revision of DO-178B to bring it up to date with respect
to current software development and verification technologies, e.g. the
use of formal methods to complement or replace dynamic testing:
theorem proving, model checking, abstract interpretation.

6

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

7

Criticality levels:

A (lowest) to

D (highest)

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

8

 Importance of static verification emphasized:

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

9

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

10

Excerpt from:

IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable

electronic safety-related systems – Part 3: Software requirements

E&E Systems: IEC-61508 – Edition 2.0

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

11

Criticality levels:

SIL1 (lowest) to

SIL4 (highest)

Confidence levels:

R1 (lowest) to

R3 (highest)

E&E Systems: IEC-61508 – Edition 2.0

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Railway: prEN-50128

12

Excerpt from:

DRAFT prEN 50128,

July 2009

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

13

Industry Perspective

 In most current safety standards variants of static analysis are
recommended or highly recommended as a verification technique

 Abstract-interpretation–based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties

 Examples:

 Static WCET analysis (aiT)

 Static stack usage analysis (StackAnalyzer)

 Static runtime error analysis (Astrée): proving the absence of erroneous
pointer dereferencing, out-of-bounds array indices, arithmetic overflows,
division by zero,…

 aiT application examples:

 safety-critical Airbus software in many airplane types (A380,…)

 by NASA as an industry-standard tool for demonstrating
the absence of timing-related software defects in the
Toyota Unintended Acceleration Investigation (2010)*

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the

Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Stack Usage Analysis

 Stack space has to be reserved at configuration time

⇒ maximum stack usage has to be known

 Underestimating stack usage can cause stack overflows,

which are severe errors:

 can cause wrong reactions and program crashes

 hard to recognize

 hard to reproduce and fix

 Overestimating the stack usage means wasting resources

 StackAnalyzer calculates safe and precise upper bounds
of the maximum stack usage of the tasks in the system

14

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Testing is Difficult

 A traditional approach:

1. Fill the stack area with a pattern (0xAAAA)

2. Let the system run for a long time

3. Monitor the maximum stack usage so far

Expensive

Error-prone

Not safe!

 Typical stack usage of a task can be very different
from its maximum stack usage. Dynamic testing
typically cannot guarantee that the worst case
has been observed.

15

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer

 StackAnalyzer computes safe upper bounds of the stack usage
of the tasks in a program for all inputs

 Static program analysis based on abstract interpretation

16

instruction "_main" + 1 computed

calls "_fooA", "_fooB", "_fooC";

routine "_fib" incarnates max 5;

Optional annotations:
function pointers, recursion depths,…

Entry points

 Stack pointer

 Visualization

 Documentation

Executable (ELF, COFF,…)

à =€@€
aŒ† |
@€,@€;ÞKÿ
ÿô;ÿ
KÿÿØ‰•€2}Œ
`øÿÿ™•€(8H#
é³¡•¶•€(

StackAnalyzer

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Analyses Overview

17

Stack usage in bytes for

 Tasks

 Interrupt service routines

© 2012 AbsInt GmbH

Annotated Call Graph

18

Stack history from
entry point to the
selected routine

Stack usage of
a single function
(global and local)

Overall maximum
stack usage

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Global Stack Usage Analysis

 An RTOS might implement several stacks
to support preemption

 Each stack has to be considered separately

 Stacks might be shared

 Non-preemptive tasks of the same priority

 Interrupt service routines

19

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

One Stack

20

End of reserved stack space

Start of reserved stack space

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)

Usable stack space

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Maximum Stack Usage

21

Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)

+

+

+

+

+

+

+

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

ISRs + OSEK Tasks + Frames

22

OSEK frame

OSEK task

ISR frame

ISR

Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)

+

+

+

+

+

+

+

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Result Combination

23

 Formulate mathematical expressions

 Refer to analysis IDs

 Allows to compute
system stack usage automatically

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Qualification Support Kits

 Report Package
 Operational Requirements Report:

lists all functional requirements

 Verification Test Plan:
describes one or more
test cases to check each
functional requirement

 Test Package
 All test cases listed in the

Verification Test Plan report

 Scripts to execute
all test cases including an
evaluation of the results

24

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Advantages

 Results are determined automatically

 Results are valid for all inputs and all execution scenarios

 No debug information required

 No modification of your code or tool chain required

 Inline assembly is taken into account

 Library functions are taken into account

 Calls via function pointers are taken into account

 Recursive calls are taken into account

 Can be used for stack optimization/software integration

 Successfully used for certification, e.g. according to DO-178B Level A

 Available for numerous processor/compiler combinations

25

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Summary

 Current safety standards require demonstrating
that the software works correctly and the relevant safety goals
are met, including non-functional program properties.
In all of them, variants of static analysis are recommended
or highly recommended as a verification technique.

 Abstract-interpretation–based static analysis tools compute results
which hold for any possible program execution and any input
scenario. They are in wide industrial use and can be considered as
the state-of-the-art for validating non-functional safety properties.

 aiT Worst-Case Execution Time Analyzer

 StackAnalyzer for proving the absence of stack overflows

 Astrée for proving the absence of runtime errors

 These tools enhance system safety
and can contribute to reducing the V&V effort.

26

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

27

info@absint.com

www.absint.com

