
XTC

Language Specification

Version 2.7

Release: Version 2.7

Date: March 13, 2019

Status: Release

Reference: xtc-specification

Copyright notice:

c© Interest Project Consortium

c© Interested Project Consortium

c© ALL-TIMES Project Consortium

c© TeamPlay Project Consortium

This specification defines the XML Timing Cookie (XTC) Language, the inter-
change format used initially in the Interest project and now updated in the Inter-
ested project. This specification defines XTC 2.7.

XTC 2.7 is an XML application conforming to the Extensible Markup Lan-
guage (XML) 1.0 (Fourth Edition).

Contents

Contents

1 What is XTC? 3
1.1 Abstract Model of the Real World . 3

2 Normative Definition of XTC 2.7 5
2.1 Common Section . 5

2.1.1 General Section . 5
2.1.2 CPU Section . 5
2.1.3 Request / Response Section . 6

2.2 Cookie Section . 11

3 Example XTC Requests 13
3.1 UCB Analysis via XTC . 13
3.2 Determination of Unknown Loop Bounds 14
3.3 Resolving of Unresolved Computed Calls 16
3.4 Several Stack and WCET Analyses . 19

4 Options used by aiT, StackAnalyzer, TimeWeaver, TimingProfiler, and
EnergyAnalyzer 21

5 Options used by Astrée 23

2

1 What is XTC?

1 What is XTC?

The XML Timing Cookie (XTC) language is an XML application conforming to the Extensi-
ble Markup Language 1.0 (Fourth Edition). It is an interchange format that was first used in
the Interest project to transport information, analysis requests, and results between the appli-
cations for generating or analyzing different parts of embedded software.

An XTC document is made up of two parts: a common section and a cookie section. The
common section has a specified format (see Section 2.1). It contains information on the project
to be analyzed, information needed for the requested analyses, and the analysis requests as
well as analysis results. The cookie section (as presented in Section 2.2) can be used by a tool
to store tool-specific data that might be useful for restarting an analysis.

1.1 Abstract Model of the Real World

This section describes how real-life projects are modeled in XTC along with the terms that are
used.

A system consists of several computation nodes that perform actual tasks. These nodes are
called CPUs. A CPU is described mainly by its type (architecture), its computation speed,
and the program it executes 1.

Each CPU usually executes several tasks that run concurrently. Each task typically consists of
a sequence of processes or runnables (AUTOSAR notation). Each runnable or process in turn
typically consists of one or more functions. Thus, the entry point of a runnable usually corre-
sponds to a known function name, but may also be the address of an arbitrary instruction.

A user can set up his system with different granularity, and may describe it with different level
of detail. Therefore we provide the usage of an executable that must be typed with a type tag
of function, runnable, or task.

Tasks can be invoked in different execution contexts with different timing behavior. For in-
stance, it may happen that a task only initializes some local variables when it is called for
the first time, but performs some real work in subsequent calls resulting in higher running
times. Thus, knowledge of the current execution context can considerably improve the preci-
sion of worst-case execution time analysis. Therefore we introduce a field to record the mode
a runnable is executed in.

1There are surely more characteristics that define an actual CPU but these details are tool-specific and not
relevant at this abstraction level.

3

1 What is XTC?

Given the CPU, executable and mode elements, we can form an analysis request. This may
be, e. g., a request for worst-case execution time analysis or stack analysis. The tool that reads
an XTC file and performs a requested analysis creates a response when it has terminated
successfully.

4

2 Normative Definition of XTC 2.7

2 Normative Definition of XTC 2.7

Each XTC document consists of a mandatory common section and optional cookie sections
that are contained in the global xtc element.

The common section contains analysis requests and information that is needed to process
them. The cookie sections are a means to store additional information, e. g., information
gathered during an analysis that is useful for later reuse. Cookies are linked to an owner
application.

2.1 Common Section

The common section contains an optional general section and at least one CPU section. It
has no attributes.

2.1.1 General Section

The general section can be used to assign an ID to the whole XTC file. This is done by setting
an attribute id.

An optional description section can be used to describe the project or settings the analysis
requests are aimed at. It has no attributes and contains simple text that is intended to be
displayed to the user by a tool that processes the XTC file.

2.1.2 CPU Section

A CPU section describes the hardware a code snippet is executed on. Its id attribute has to
contain a unique identifier. A name attribute can be used to give the user a hint what architec-
ture is used. The file attribute can contain the absolute path to the executable containing the
code snippet to be analyzed.

The attributes speed and unit can be used to specify the clock rate of the CPU. The speed is a
float value. Valid values for unit are MHz, kHz, and Hz. The unit attribute is optional. If it is
missing, Hz is assumed.

A CPU section has to contain at least one executable section. This section and the required
attribute type identify what is executed on the CPU. Possible values for this attribute are:

5

2 Normative Definition of XTC 2.7

task: A task is an execution path through address space which is controlled by the operating
system. It may consist of several runnables or processes that are sequentially executed.

runnable: A runnable or process is a collection of functions that are sequentially executed.

function: A function is the smallest unit for an execution path through address space. It
usually corresponds to functions used in program languages.

An additional attribute name exists whose value can be displayed to the user to decide where
a requested analysis has to be started. If the assembly name of the function starting the task is
known to the application creating the request, it can be passed via the start attribute. Note that
this attribute value has to be a symbol contained in the executable and thereby references a
start address in the executable. Each executable section must have a unique identifier present
in its id attribute.

To distinguish between different execution contexts, an executable section has to contain at
least one mode section. Each mode section must have a unique identifier present in its id
attribute. A description of the execution context can be put in the name attribute, so that the
user can decide which settings are correct for the analysis.

The mode section has to contain at least one request element. There may be optional response
elements matching the request elements. A cookie passed from a tool requesting analyses to
a tool performing analyses usually does not contain response elements. A cookie passing in
the opposite direction after successful analysis will contain response sections containing the
analysis results.

2.1.3 Request / Response Section

A request section contains an analysis request. The type of the analysis requested is specified
by the type attribute. Possible values are:

WCET: Perform a worst-case execution time analysis

BCET: Perform a best-case execution time analysis

BCET-WCET: Perform both a best-case and worst-case execution time analysis

Stack: Perform a stack height analysis

LoopTrace: Perform a loop iteration range analysis

CallTrace: Perform a computed call target analysis

6

2 Normative Definition of XTC 2.7

WCRT: Perform a worst-case response time analysis

BCRT: Perform a best-case response time analysis

BCRT-WCRT: Perform both a best-case and worst-case response time analysis

Activation: Provide information about the activation model of an executable

OS-Overhead: Provide information about scheduling overhead of an executable, like acti-
vate or terminate task

TimingProfiler: Identify application parts that cause unsatisfactory execution times

TimeWeaver: Perform a hybrid (measurement-based) worst-case execution time analysis

Energy: Perform a worst-case energy consumption analysis

Astree: Static analysis to detect run-time errors in source files

The types of the requests in a mode section must be pairwise different.

The mode attribute tells the analyzer how a request is to be handled. The following list shows
valid values along with a description:

configuration
Start the analyzer so an expert user may configure settings on the hardware, etc. In this
mode no response is generated but cookies are updated.

interactive
The analyzer is started in a way allowing the user to control and manipulate common
analysis settings, e. g., the entry point.

batch
Try to start the analyzer in batch mode, i. e. running in the background with no need
for additional user interaction. This is only possible if all information required for the
analysis is present.

If no mode attribute is given, interactive mode is used.

A request section may contain option elements to pass tool-specific information. Each op-
tion has a name and a value attribute. The contents of these attributes are tool-specific (see
Section 3 for examples).

7

2 Normative Definition of XTC 2.7

For each request element, there may be a corresponding response section. The association of
response sections to request sections is done via the type. This is possible since the types of
the requests in a mode section must be pairwise different.

• A response section of type WCET contains a single WCET element. A WCET element
has at least two attributes:

– The value attribute contains a float number denoting the time spent on the worst-
case path.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (sec-
onds), or cycles (CPU cycles). Default is cycles.

Optional attributes additional_entry and additional_entry_index identify additional
analysis entries usually specified in annotation files. The index is an integer value and
starts from 1.

A WCET element may additionally contain an UCB element. This element is available
if a UCB analysis has been requested initially (see Section 4). An UCB element has
four attributes:

– The maxNumber contains the maximum number of useful cache blocks (UCBs).

– The blockPenalty attribute contains a float number denoting the eviction costs of a
single UCB.

– The totalPenalty attribute contains a float number denoting the eviction costs of
the maximum number of UCBs.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (sec-
onds), or cycles (CPU cycles). Default is cycles.

• A response section of type BCET contains a single BCET element. A BCET element
has at least two attributes:

– The value attribute contains a float number denoting the time spent on the worst-
case path.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (sec-
onds), or cycles (CPU cycles). Default is cycles.

Optional attributes additional_entry and additional_entry_index identify additional
analysis entries usually specified in annotation files. The index is an integer value and

8

2 Normative Definition of XTC 2.7

starts from 1.

• A response section of type Stack may contain one or two stack-usage elements, depend-
ing on the number of stacks in the target architecture (some targets distinguish between
a system stack and a user stack). A stack-usage element has four attributes:

– The type attribute indicates the type of the stack. It may be System or User.

– The attributes min and max contain the lower end and the upper end of the result
interval computed by stack analysis. Their values may be integers or the special
values BOT and TOP.

– The unit attribute may hold an integer between 1 and 127. It represents the size of
the unit used for min and max, measured in bytes. For instance, if max is 10 and
unit is 4, this means that the maximum stack usage is 10 units of 4 bytes each, i. e.
40 bytes. The default value for unit is 1, which means that max is the maximum
stack usage measured in bytes.

• A response section of type TimingProfiler contains a single timing-profiler element. A
timing-profiler element has at least two attributes:

– The value attribute contains a float number denoting the time spent on the worst-
case path.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (sec-
onds), or cycles (CPU cycles). Default is cycles.

Optional attributes additional_entry and additional_entry_index identify additional
analysis entries usually specified in annotation files. The index is an integer value and
starts from 1.

• A response section of type TimeWeaver contains a single TimeWeaver element. A
TimeWeaver element has at least two attributes:

– The value attribute contains a float number denoting the time spent on the worst-
case path.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (sec-
onds), or cycles (CPU cycles). Default is cycles.

• A response section of type Energy contains a single Energy element. An Energy ele-
ment has at least two attributes:

– The value attribute contains a float number denoting the energy consumed on the

9

2 Normative Definition of XTC 2.7

worst-case path.

– The unit attribute may be set to fJ (femtojoule), pJ (picojoule), nJ (nanojoule),
uJ (microjoule), mJ (millijoule), or J (joule). Default is fJ.

Optional attributes additional_entry and additional_entry_index identify additional
analysis entries usually specified in annotation files. The index is an integer value and
starts from 1.

• A response section of type Astrée contains a single instance of each of the following
elements:

– The analysis_id holds the id of the analysis created on the server to process the
request.

– The success element indicates whether the analysis run was successful.

– The errors element indicates the number of errors reported by the analyzer.

– The alarms element indicates the number of alarms reported by the analyzer.

– The coverage element indicates the total coverage for the project.

• A response section of type LoopTrace contains for each loop a LoopTrace element that
has four attributes:

– The min attribute indicates the minimum loop iteration count.

– The max attribute indicates the maximum loop iteration count.

– The start_address attribute to identify an instruction before the loop.

– The count_address attribute to identify the body of the loop.

• A response section of type CallTrace contains for requested computed call a CallTrace
element that may contain an arbitrary number of target elements. Both the CallTrace
and the target element feature a single address attribute. For the CallTrace the address
denotes the addresses of the program point where the computed call resides. The ad-
dress attribute of the target element indicates the target address of the corresponding
computed call.

• A response section of type Activation may contain any event model type (StandardE-
ventmodelType, PatternEventmodelType or InterruptEventmodelType).

10

2 Normative Definition of XTC 2.7

– StandardEventModel consists of the three values period, jitter and mindist. An
additional field indicates to indicate that this event is sporadic.

– The PatternEventModel has similar attributes as the StandardEventModel. It ad-
ditionally has the possibility to describe an event sequence. While defining the
StandardEventModel it was implicit that an event would always occur at the be-
ginning of the period. While defining a PatternEventModel each such activation
has to be specified.

– The InterruptEventModel defines a sequence of eventPairs. Each pair defines the
minimum and maximum distance between events. The first pair in the sequence
defines the distances between two events. The second pair in the sequence defines
the distances between three events, and so forth.

• The OsOverheadTypeContent provides information regarding the overhead induced to
the selected element by the OS scheduling. These overheads are detailed below.

– The activation overhead is the time required by the OS to schedule the activation
of the element.

– The termination overhead is the time required by the OS to clear up after the ele-
ment has finished execution.

– The contextSwitch overhead is the time it takes for the OS to preempt the selected
element and switch the execution to another task or ISR.

– The contextSwitchCachePenalty is the largest execution time effect on the element
if its cache is destroyed, at any point, during execution. This value is used dur-
ing scheduling analysis to compensate for the undisturbed execution assumption
during static WCET analysis.

2.2 Cookie Section

Each cookie section is owned by a single tool. Its name has to be specified in the owner
attribute. Currently used values are:

alauncher: AbsInt’s tools (aiT worst-case execution time analyzer, StackAnalyzer,
TimeWeaver, TimingProfiler, EnergyAnalyzer, Astrée Analyzer for static run-time er-
ror analysis)

RT-Druid: Evidence’s configuration and schedulability analysis tool

11

2 Normative Definition of XTC 2.7

SymTA/S: Symtavision’s SymTA/S tool suite

Each tool can only have one cookie section.

The organization of a cookie section is defined by the owner application. The XTC specifica-
tion only requires a unique namespace.

12

3 Example XTC Requests

3 Example XTC Requests

3.1 UCB Analysis via XTC

Example demonstrating how to trigger the UCB analysis via XTC:

• Input XTC cookie enabling the UCB analysis:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="120.0" unit="MHz" id="ID_0" name="mpc5554" file="edn.elf">
<executable type="runnable" id="ID_1" name="edn" start="main">

<mode id="ID_2">
<description>EDN</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="mpc55xx" name="a3:cpu"/>
<option value="edn.ais" name="a3:global_ais_file"/>
<option value="true" name="a3:ucb_analysis"/>
<option value="3" name="a3:ucb_penalty"/>

</request>
</mode>

</executable>
</CPU>

</common>
</xtc>

• Final XTC cookie with UCB analysis results:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="120.0" unit="MHz" id="ID_0" name="mpc5554" file="edn.elf">
<executable type="runnable" id="ID_1" name="edn" start="main">

<mode id="ID_2">
<description>EDN</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="mpc55xx" name="a3:cpu"/>
<option value="edn.ais" name="a3:global_ais_file"/>
<option value="true" name="a3:ucb_analysis"/>
<option value="3" name="a3:ucb_penalty"/>

</request>
<response vendor="a3" type="WCET">

<WCET unit="us" value="856.733333">
<UCB totalPenalty="0.250000"

unit="us"
blockPenalty="0.025000"
maxNumber="10"/>

</WCET>
</response>

</mode>

13

3 Example XTC Requests

</executable>
</CPU>

</common>
</xtc>

3.2 Determination of Unknown Loop Bounds

Tool interaction between SymTA/S, T1 and aiT (unknown loop bounds):

• Input XTC cookie from SymTA/S to compute the WCET of some entry point:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET" />

</mode>
</executable>

</CPU>
</common>

</xtc>

• Intermediate XTC cookie featuring a LoopTrace request (only modified parts are
shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<request vendor="a3" type="LoopTrace" source="analysis">

<option value="0x43691c" name="T1:start_addresses"/>
<option value="0x436920" name="T1:count_addresses"/>
<option value="0x436930" name="T1:end_addresses"/>

</request>
...

• Response from T1 featuring measured loop bounds (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<response type="LoopTrace" vendor="T1">

<LoopTrace start_address="0x0043691c"
count_address="0x00436920"
min="80"

14

3 Example XTC Requests

max="100"/>
</response>
...

15

3 Example XTC Requests

• Final XTC cookie featuring WCET analysis results

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET" />
<request vendor="a3" type="LoopTrace" source="analysis">

<option value="0x43691c" name="T1:start_addresses"/>
<option value="0x436920" name="T1:count_addresses"/>
<option value="0x436930" name="T1:end_addresses"/>

</request>
<response type="LoopTrace" vendor="T1">

<LoopTrace start_address="0x0043691c"
count_address="0x00436920"
min="80"
max="100"/>

</response>
<response vendor="a3" type="WCET">

<WCET unit="us" value="20.732143"/>
</response>

</mode>
</executable>

</CPU>
</common>

</xtc>

3.3 Resolving of Unresolved Computed Calls

Tool interaction between SymTA/S, T1 and aiT (unresolved computed calls):

• Input XTC cookie from SymTA/S to compute the WCET of some entry point:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET" />

</mode>
</executable>

</CPU>
</common>

</xtc>

16

3 Example XTC Requests

• Intermediate XTC cookie featuring a CallTrace request (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<request vendor="a3" type="CallTrace">

<option value="0x41b5f4,0x41ba04" name="T1:call_addresses"/>
</request>
...

• Response from T1 featuring measured computed call targets (only modified parts are
shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<response type="CallTrace" vendor="T1">

<CallTrace address="0x0041B5F4">
<target address="0x0042D2CC"/>

</CallTrace>
<CallTrace address="0x0041BA04"/>

</response>
...

• Final XTC cookie featuring WCET analysis results

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET" />
<request vendor="a3" type="CallTrace">

<option value="0x41b5f4,0x41ba04" name="T1:call_addresses"/>
</request>
<response type="CallTrace" vendor="T1">

<CallTrace address="0x0041B5F4">
<target address="0x0042D2CC"/>

</CallTrace>
<CallTrace address="0x0041BA04"/>

</response>
<response vendor="a3" type="WCET">

<WCET unit="us" value="16.643"/>
</response>

</mode>
</executable>

</CPU>
</common>

17

3 Example XTC Requests

</xtc>

18

3 Example XTC Requests

3.4 Several Stack and WCET Analyses

Complex XTC request file featuring several WCET-analysis and stack-analysis requests:

<xtc
xmlns:a3="http://www.all-times.org/xtc/a3"
xmlns:SymTA-S="http://www.all-times.org/xtc/SymTA-S"
xmlns:RTDruid="http://www.all-times.org/xtc/RTDruid"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<common>
<general id="id1">

<description>Description of the project</description>
</general>
<CPU id="id2" name="Motorola PowerPC 565">

<executable type="runnable" id="id3" name="Main entry" start="_main">
<mode id="id4">
<description>Specify mode for the given entry point</description>
<request type="WCET" mode="interactive">

<option name="a3:cpu" value="mpc5xx"/>
<option name="a3:build" value="55383"/>
<option name="a3:target" value="MPC565"/>
<option name="a3:global_ais_file" value="common.ais"/>
<option name="a3:ais_file" value="main.ais"/>
<option name="a3:gdl_file" value="graph.gdl"/>
<option name="a3:xml_report_file" value="report-wcet.xml"/>
<option name="a3:stack_address" value="0x3ffff8"/>

</request>
<request type="Stack" mode="interactive">

<option name="a3:cpu" value="mpc5xx"/>
<option name="a3:build" value="55383"/>
<option name="a3:target" value="MPC565"/>
<option name="a3:ais_file" value="test.ais"/>
<option name="a3:xml_report_file" value="report-stack.xml"/>
<option name="a3:stack_address" value="0x3ffff8"/>

</request>
</mode>

</executable>
<executable type="runnable" id="id5" name="Computation" start="_compute">

<mode id="id6">
<description>Specify mode for the given entry point</description>
<request type="WCET" mode="interactive">

<option name="a3:cpu" value="mpc5xx"/>
<option name="a3:build" value="55383"/>
<option name="a3:target" value="MPC565"/>
<option name="a3:ais_file" value="compute.ais"/>
<option name="a3:xml_report_file" value="report.xml"/>
<option name="a3:stack_address" value="0x3ffff0"/>

</request>
</mode>

</executable>
</CPU>

19

3 Example XTC Requests

</common>
</xtc>

20

4 Options used by aiT, StackAnalyzer, TimeWeaver, TimingProfiler, and EnergyAnalyzer

4 Options used by aiT, StackAnalyzer, TimeWeaver,
TimingProfiler, and EnergyAnalyzer

This section lists the name attributes of a request’s option element that are recognized by
aiT, StackAnalyzer, TimeWeaver, TimingProfiler, and EnergyAnalyzer, and describes how the
value is used for the analysis. They use the prefix a3 because aiT, StackAnalyzer, TimeWeaver,
TimingProfiler, and EnergyAnalyzer are invoked via the a3 binary. If the value of an option is
a relative path or a relative file name then the value is interpreted relative to the location of the
XTC document.

• a3:cpu
The name of the CPU so a suitable member of the aiT/StackAnalyzer family can be
started.

• a3:build
The build number of aiT/StackAnalyzer to use.

• a3:target
If there are several cores (i. e. targets) to choose from, this option can be used to se-
lect the desired one. For example, a3 for the MPC5xx CPU supports targets such as
MPC555, MPC565, etc.

• a3:global_ais_file
The name of the AIS file that is used for all analyses.

• a3:ais_file
The name of the AIS file that is used for the analysis in addition to the global AIS file.

• a3:gdl_file
The name of the file to be used for visualizing the analysis results.

• a3:report_file
The name of a plain text report file.

• a3:xml_report_file
The name of a XML report file.

• a3:xml_show_per_context_info
Output information in the XML report per context.

• a3:html_report_file
The name of an HTML report summary file that should be created from the XML report

21

4 Options used by aiT, StackAnalyzer, TimeWeaver, TimingProfiler, and EnergyAnalyzer

file.

• a3:stack_address
The initial value of the stack pointer.

• a3:scade_xml_file
The name of the XML file that is needed to launch aiT/StackAnalyzer if bundled with
SCADE.

• a3:map_file
The name of the MAP file that is needed for the x86 target.

• a3:ucb_analysis
Instructs aiT to perform a useful cache block (UCB) analysis if supported by the target.
This is only valid for a WCET analysis.

• a3:ucb_penalty
The eviction costs for a useful cache block. If not specified, one CPU cycle is used as
the default.

• a3:data_dictionary
The name of the data dictionary XML file in extended format that is used to extract
additional information.

• a3:includes
A list of paths that are used as include paths when preprocessing source files.

• a3:skip_wcet_main_entry
If additional starts are found during analysis, do not perform a WCET analysis for the
specified main entry.

• a3:stack_analysis_mode
Set the stack analysis mode. Possible values are:

– normal,

– optimized_with_contexts and

– optimized_without_contexts.

• a3:traces
Comma-separated list of paths to trace files.

• a3:trace_format

22

5 Options used by Astrée

The format in which the traces are provided. Possible values are:

– NexusBHM,

– NexusCSV,

– NexusInfineonDAS,

– NexusInfineonTAB,

– NexusLauterbach,

– NexusLauterbachExport, and

– NexusPLS.

5 Options used by Astrée

This section lists the name attributes of a request’s option element that are recognized by
Astrée and describes how the value is used for the analysis.

If the value of an option is a relative path or a relative file name then the value is interpreted
relative to the location of the XTC document.

• astree:build
The build number of Astrée to use.

• astree:server
The Astrée server to connect to.

• astree:port
The port on which the Astrée server is listening.

• astree:dax
Specifies a DAX file describing the analysis to be performed. All other options are
ignored.

• astree:source_files
A list of C source files that are to be analyzed but need to be preprocessed first.

23

5 Options used by Astrée

• astree:preprocessed_source_files
A list of C source files that are to be analyzed and are already preprocessed.

• astree:includes
A list of paths that are used as include paths when preprocessing source files.

• astree:defines
A list of paths that are used as defines paths when preprocessing source files. Each
define entry in the list has the form <name>[=<value>].

• astree:standard_c_library_stubs Whether stubs for the standard C library should be
used for the analysis.

• astree:keep_comments
Whether comments should be kept in the preprocessed source files.

• astree:analysis_start
The name of the function that is the start of the analysis. This option overwrites the
start attribute of the executable element.

• astree:wrapper
The name of file containing the wrapper function used as analysis start.

• astree:analysis_options
The name of the file containing analysis options.

• astree:analysis_abi
The name of the file defining the application binary interface.

• astree:analysis_annotations
The name of the file containing the annotations to use for the analysis in AAL.

• astree:log_file
The name of the textual analysis log file.

• astree:xml_log_file
The name of the XML file containing all relevant information of the analysis run in a
form that is convenient for machine processing.

• astree:timeout
Timeout in seconds after which the analysis is stopped. Only effective in batch mode.

24

5 Options used by Astrée

Appendix: Document History

This appendix describes the revision history of this document. Dates are written in the format
DD-MM-YYYY. A document release is a release version of the document. Document releases
can be identified by the date occurring on the title page. The history given below lists all
changes to this document.

13-03-2019 Added support for TimeWeaver.
31-01-2019 Fixed typo.
15-11-2018 Added support for EnergyAnalyzer.
10-04-2018 Added support for additional_entry and additional_entry_index attributes.
20-03-2018 Removed machine settings file option.
21-02-2017 Removed support for Astrée options xml_summary_file,

xml_coverage_file, xml_alarms_file, xml_alarms_by_type_file,
xml_alarms_by_source_file, data_dictionary,
data_dictionary_subsystems, data_dictionary_toplevel_subsystems,
data_dictionary_flags and postprocess_script.

13-12-2016 Added support for a3 option map_file.
16-08-2016 Updated examples.
11-03-2016 Added support for a3 option stack_analysis_mode.
12-01-2016 Removed references to old aiT options.
18-12-2015 Added support for Astrée option dax.
18-09-2015 Added support for Astrée option data_dictionary_toplevel_subsystems.
17-06-2015 Adder support for Astrée option filter.
03-04-2014 Renamed owner from a3 to alauncher.
09-10-2013 Added support for xml_show_per_context_info option.
06-08-2013 Removed support for xml_result_file.
02-08-2013 Added support for html_report_file option, removed xml_style_sheet op-

tion.
17-06-2013 Added support for Astrée option analysis_annotations.
02-05-2013 Added support for Astrée option data_dictionary_subsystems.
06-12-2012 Replaced options volatile and const_volatile by parameters and ar-

ray_parameters.
20-09-2012 Added support for additional aiT options xml_style_sheet.
07-08-2012 Changed the format of the flags for the Astrée data_dictionary_flags option

and described the response section for Astrée.
26-01-2012 Added support for Astrée data_dictionary_flags option and an option to

keep comments.

25

5 Options used by Astrée

06-01-2012 Added support for additional aiT options.
17-11-2011 Added support for Astrée analysis requests and the data dictionary option.
03-05-2011 Added TimingExplorer request type.
13-01-2011 Added target option.
28-04-2010 Added CallTrace response and requests.
15-02-2010 Added some more XTC cookie examples.
05-01-2010 Added documentation on how to trigger a UCB analysis.
07-09-2009 Adapted document to XTC version 2.0.
02-02-2009 Added machine settings file option.
30-07-2008 Revised XTC examples and updated description of aiT options.
23-07-2008 Renamed top element to xtc.
30-06-2008 Update of description of response elements.

Other minor improvements.
01-04-2008 Added scade_xml_file option description.

Added global_ais_file option description.
03-03-2008 Added description of mode attribute for a request.

Added appendix containing options recognized by aiT.
12-11-2007 Correction of typos, and a bit more explanations.

Addition of an example (Section 3).
07-10-2007 Minor update: Allow request items to have a start attribute that contains

the name of the function to be analyzed.

16-08-2007 First release.
18-06-2007 First draft.

26

	Contents
	What is XTC?
	Abstract Model of the Real World

	Normative Definition of XTC 2.7
	Common Section
	General Section
	CPU Section
	Request / Response Section

	Cookie Section

	Example XTC Requests
	UCB Analysis via XTC
	Determination of Unknown Loop Bounds
	Resolving of Unresolved Computed Calls
	Several Stack and WCET Analyses

	Options used by aiT, StackAnalyzer, TimeWeaver, TimingProfiler, and EnergyAnalyzer
	Options used by Astrée

