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Abstract: Safety-critical embedded software has
to satisfy stringent quality requirements. Testing
and validation consumes a large - and growing -
fraction of development cost. The last years have
seen the emergence of semantics-based static anal-
ysis tools in various application areas, from runtime
error analysis to worst-case execution time predic-
tion. Their appeal is that they have the poten-
tial to reduce testing effort while providing 100%
coverage, thus enhancing safety. Static runtime
error analysis is applicable to large industry-scale
projects and produces a list of definite runtime er-
rors and of potential runtime errors which might be
true errors or false alarms. In the past, often only
the definite errors were fixed because manually in-
specting each alarm was too time-consuming due to
a large number of false alarms. Therefore no proof
of the absence of runtime errors could be given. In
this article the parameterizable static analyzer As-
trée is presented. By specialization and parameter-
ization Astrée can be adapted to the software under
analysis. This enables Astrée to efficiently compute
precise results. Astrée has successfully been used
to analyze large-scale safety-critical avionics soft-
ware with zero false alarms.

Keywords: Proof of absence of runtime errors, ab-
stract interpretation, static C code analysis, DO-
178B, ISO-26262

1. Introduction

Safety-critical embedded software has to satisfy
stringent quality requirements. A system failure
or malfunction can have severe consequences and
cause high costs. Testing and validation consumes a
large — and growing - fraction of development cost.
Thus, developers face the challenge of ensuring the
correct functioning of the software, but this has to
be done with reasonable effort.

In the avionics, automotive, and healthcare indus-
tries static analyzers based on abstract interpreta-
tion have increasingly been used to validate pro-
gram properties of safety-critical software. The re-
sults are only computed from the software structure

ERTS? 2010 - May 19-21, 2010 - Toulouse

without actually running the software under analy-
sis. The results thus obtained hold for any possi-
ble input scenario and any possible program execu-
tion. Examples are tools for computing the worst-
case execution time [28, 13] or the maximal stack
usage of tasks [12], the accuracy of floating-point
computations [20], and the absence of run-time er-
rors [2, 6, 8]. Modern semantics-based static ana-
lyzers scale well and support the analysis of large
industrial software projects.

This article focuses on a certain class of errors, the
so-called runtime errors. Examples for runtime er-
rors are floating-point overflows, array bound vio-
lations, or invalid pointer accesses. Runtime er-
rors lead to undefined program behavior; the con-
sequences range from erroneous program behavior
to wholesale crashes. A well-known example for the
possible effects of runtime errors is the explosion
of the Ariane 5 rocket on its maiden flight in 1996
[19].

An important goal when developing critical soft-
ware is to prove that no such errors can occur at
runtime. Software testing can be used to detect
errors, but since usually no complete test cover-
age can be achieved, it cannot provide guarantees.
Semantics-based static analysis allows to derive
such guarantees even for large software projects.
The success of static analysis is based on the fact
that safe overapproximations of program semantics
can be computed. This means that the results of
such analyses will be either “(i) statement x will not
cause an error”, or “(ii) statement x may cause an
error”. In the first case, the user can rely on the ab-
sence of errors, in the second case either an error
has been found, or there is a false alarm. This im-
precision allows sound static analyzers to compute
results in acceptable time, even for large software
projects. Nevertheless the results are reliable, i.e.,
the analysis will only err on the safe side: if the
analyzer does not detect any error, the absence of
errors has been proven - the coverage is 100%.

Each alarm has to be manually investigated to de-
termine whether there is an error that has to be
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corrected, or whether it was just a false alarm. If all
the alarms raised by an analysis have been proven
to be false, then the proof of absence of runtime
errors is completed. This could be checked manu-
ally, but the problem is that such a human analy-
sis is error-prone and time consuming, especially
since there might be interdependencies between
the false alarms. If the analyzer does not report
any alarm the absence of runtime errors is auto-
matically proven by the analyzer run. Therefore the
ideal solution is to enable the analyzer to finish the
analysis with zero alarms.

To that end, it is important that the analyzer is
precise, i.e., produces only few false alarms with-
out particular user interaction. This can only be
achieved by a tool that can be specialized to a
class of properties for a family of programs. Ad-
ditionally the analyzer must be parametric enough
for the user to be able to fine tune the analysis
of any particular program of the family. General
software tools not amenable to specialization and
parametrization usually report a large number of
false alarms. That is the reason why in indus-
try such tools are only used to detect runtime er-
rors, and not to prove their absence. The analyzer
should also provide flexible annotation mechanisms
for users to communicate external knowledge to the
analyzer. Only by a combination of high analyzer
precision and support for semantic annotations the
goal of zero false alarms can be achieved.

In our article we focus on the static analyzer As-
trée (Analyseur statique de logiciels temps-réel em-
barqués) [1], which originates from the Ecole Nor-
male Supérieure [10]. Since February 2009 Astrée
is commercially available and is now developed and
distributed by AbsInt under license of CNRS/ENS.
Astrée has been specifically designed to meet the
above mentioned requirements: it produces only a
small number of false alarms for control/command
programs written in C, and provides the user with
enough options and directives to help reduce this
number down to zero. Astrée has been successfully
used to analyze industrial Airbus avionics software
[27]. We give an overview of the structure of Astrée
and describe how developers can use it to achieve
the goal of zero false alarms and thus efficiently val-
idate the absence of run-time errors.

2. Static Analyzers

Static analyzers compute their results only from the
program structure by inspecting the source code or
binary code, but without actually executing it.

Static analyzers are sometimes understood as in-
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cluding style checkers looking for deviations from
coding style rules, like the MISRA guidelines pre-
scribed by the Motor Industry Software Reliability
Association [24]. Such style checkers are usually
not “semantics-based”, and thus cannot check for
correct runtime behavior.

Furthermore static analyzers can be categorized in
sound vs.unsound analyzers. A program analyzer
is unsound when it can omit to signal an error that
may appear at runtime in some execution environ-
ment. Unsound analyzers are bug hunters or bug
finders aiming at finding some of the bugs in a well-
defined class. Their main defect is unreliability, be-
ing subject to false negatives thus claiming that
they can no longer find any bug while many may
be left in the considered class. Unsoundness can be
caused e.g., by skipping program parts which are
hard to analyze, ignoring some types of errors, dis-
regarding some runtime executions, or adopting a
simplified program semantics. Example tools from
this class are ESC Java [18], Coverity CMC [11],
Klocwork K7 [16], PRE-fast [25], or Splint [17]. A
more comprehensive overview is found in [6].

Such unsound approaches are all excluded in As-
trée. Astrée is a bug eradicator in that sense that
all bugs from a well-defined class, i.e., runtime er-
rors, are found. Another tool from this class is
Polyspace Verifier [8]. More precisely, Astrée is a
sound semantics-based static analyzer based on Ab-
stract Interpretation.

2.1 Abstract Interpretation

Static analyzers compute invariants for all program
points by fixed point iteration over the program
structure or the control flow graph. The theory of
abstract interpretation [5] offers a semantics-based
methodology for static program analysis. The con-
crete semantics is mapped to an abstract semantics
by abstraction functions. While most interesting
program properties are undecidable in the concrete
semantics, the abstract semantics can be chosen to
be computable. The static analysis is computed with
respect to that abstract semantics. Compared to an
analysis of the concrete semantics, the analysis re-
sult may be less precise but the computation may
be significantly faster. By skilful definition of the
abstract domains a suitable trade-off between pre-
cision and efficiency can be obtained.

Abstract interpretation supports formal correctness
proofs: it can be proven that an analysis will ter-
minate and that it computes an overapproximation
of the concrete semantics, i.e., that the analysis re-
sults are sound. A static runtime error analysis is
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called sound if it never omits to signal an error that
can appear in some execution environment. If no
potential error is signalled, definitely no runtime
error can occur. If a potential error is reported,
the analyzer cannot exclude that there is a concrete
program execution triggering the error. If there is
no such execution, this is a false alarm. Thus, im-
precision can occur, but only on the safe side; it can
never happen that there is an error from the error
class under analysis which is not reported.

3. Astrée— Design and Overview

Astrée [2] is a parametric static analyzer based on
abstract interpretation that aims at proving the ab-
sence of run-time errors of programs written in C,
according to “ISO/IEC 9899:1999 (E)” (C99 stan-
dard) [3]. Astrée analyzes structured C programs,
with complex memory usage, but without dynamic
memory allocation and without recursion. This en-
compasses many embedded programs as found in
earth transportation, nuclear energy, medical in-
strumentation, aeronautic, and aerospace applica-
tions, in particular synchronous control/command
programs such as electronic flight control. The er-
rors that are currently reported are: out-of-bound
array accesses, integer division by zero, floating
point overflows and invalid operations (resulting in
IEEE floating values Inf and NaN), integer arith-
metics wrap around behavior (occurring mainly in
overflows), and casts that result in wrap around op-
erations (when the target type is too small to con-
tain a value), and violations of arbitrary user de-
fined assertions on the software. In addition, As-
trée points out unanalyzed (unreachable) code and
warns about possibly non-terminating code.

Providing a rigorous formal semantics of C pro-
grams as a basis for static analyzers is extremely
difficult since there is considerable leeway for im-
plementations. As an example the source seman-
tics is undefined after a runtime error. A write ac-
cess via an invalid pointer or an out-of-bounds ar-
ray index can corrupt memory. The result of such a
program execution cannot be statically determined.
Therefore, Astrée distinguishes between two differ-
ent types of runtime errors [6]: runtime errors cor-
responding to undefined behaviors, and runtime er-
rors corresponding to unspecified but predictable
behaviors. They differ in the consequences of an ac-
tually occurring error, but in both cases Astrée will
go on with an over-approximation of the considered
executions and it will definitely discover all errors
after a false alarm.
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3.1 Handling Undefined Behavior

For runtime errors corresponding to undefined be-
haviors Astrée produces an alarm and continues
the analysis only for concrete program executions
where the error does not occur. Examples for this
class of runtime errors are integer division by zero,
floating-point overflow, and invalid array or pointer
accesses. E.g., the following program:
#include <stdio.h>
int main() {

int n, T[O];

n = 2147483647,

printf("n=%i, T[n]=%i\n", n, T[nl);
}
produces different results on different machines:

n=2147483647, T[n]=2147483647 (PPC Mac)
n=2147483647, T[n]=-1208492044 (Intel Mac)
n=2147483647, T[n]=-135294988 (32-bit PC Intel)
Bus error (64-bit PC Intel)

Since it is not predictable what will happen after
such an error, Astrée does not attempt to make
any prediction. Instead, the analyzer assumes that
program execution stops after the error and sub-
sequently only considers scenarios where the error
did not occur. In cases where an error will definitely
occur in some execution context, Astrée reports a
definite alarm and terminates the analysis for this
context.

3.2 Handling Unspecified Behavior

For runtime errors corresponding to unspecified
but predictable behavior Astrée emits an alarm and
considers all possible outcomes during the rest of
the analysis. An example for this are integer over-
flows for which the actual computations are differ-
ent from the intended mathematical meaning. Let
us consider the following example’:

1: void main() {

2 int i;

3: if (i<0) {

4: i=-1i;

5 }

6: __ASTREE_assert((il!=-1));

7: }

Astrée reports an alarm because of the potential
overflow in line 4, but can verify the assertion in
line 6. In fact, Astrée is able to represent the pre-
cise result of the computation for a 32-bit 2’s com-
plement architecture which is in the non convex set
[0,2147483647] U {—2147483648} (cf. Sec.4).

3.3 The Zero-Alarm Goal

1We assume that two’s complement hardware has been con-
figured in the ABI settings of Astrée (cf. Sec. 5).
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For industrial use an important goal is to produce
the fewest possible number of false alarms. An au-
tomatic proof of the absence of runtime errors is
only possible if the analysis terminates without any
alarm - in the terminology of Polyspace Verifier [8]
the entire code must be green. Any alarm has to
be manually checked by the developers — and this
manual effort should be as low as possible. If there
is a true error, it has to be fixed and the analysis
has to be restarted. A false alarm can possibly be
eliminated by a suitable parameterization of Astrée
(cf. Sec. 5). If the error cannot occur due to certain
preconditions which are not known to Astrée, they
can be made available to Astrée via dedicated anno-
tations. These annotations make the side conditions
explicit which have to be satisfied for a correct pro-
gram execution.

Thus it is highly important that an analyzer sup-
plies enough information for users to understand
the cause of an alarm and to provide explicit for-
mal means for suppressing false alarms. Of course
for keeping the initial number of false alarms low, a
high analysis precision is mandatory.

3.4 Alarm Analysis

Consider the following C program:

1: #define BASE 0x80000000

2: #define OFFSET 0x38343031

3: volatile int SwitchPosition;
4:

5: int main()

6: {

7: VAT Y

8: int MODULE1l = BASE + OFFSET;
9: VAT Y

10: char sp = SwitchPosition;
11: }

Astrée emits two alarms for potential runtime er-
rors, an arithmetic overflow in line 8 and in line
10, respectively. The code producing the alarm is
marked in red (cf. Fig.1).

For each alarm the user has to check whether it can
occur in a real program execution. The alarm from
line 8 is caused by a true runtime error due to the
handling of hexadecimal constants according to the
C99 standard. The type of such a constant is as-
sumed to be int if it fits into the signed int range,
otherwise unsigned int, etc. In that case the type
unsigned int is assumed since 0x80000000= 23!
which does not fit into a 32-bit signed int, but into
a 32-bit unsigned int. Since 0x38343031>0 the re-
sult of the addition is of type unsigned int and is
outside the signed int range. A possible fix is to
declare MODULE1L as unsigned int.
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Figure 1: Astrée GUI with highlighted error loca-
tion.

If the code has been implemented under the as-
sumption that the modelled switch can take 8 differ-
ent positions, the second alarm is a false alarm. The
value of SwitchPosition is indeed volatile, but can
only take values from {0, ...,7}. This information
can be made available to Astrée by the directive
__ASTREE_volatile_input((SwitchPosition,
[0,7])). If the input program changes over time,
the validity of such annotations always has to be
explicitly checked. When running Astrée on the
modified program, no alarms are reported.

Astrée explicitly supports investigating alarms in
order to understand the reasons for them to occur.
When clicking at an alarm message the correspond-
ing code location is highlighted in the original and
preprocessed source code. Alarms can be grouped
by source code locations, and all contexts in which
an alarm occurs are listed. Alarm contexts can be
interactively explored: all parents in the call stack,
relevant loop iterations or conditional statements
can be visited per mouse click, and the computed
value ranges of variables can be displayed for all ab-
stract domains (cf. Fig. 2). Inversely, clicking on the

Analyzed file:

1 int main()

2 {

3 int i=0;

4 char c=0;

5 char A[255];

for (i=0; i<255; i++) {
7 if (i<10)

8 c+=10;

9 else if (i<100)
10 c+i;

11 Alil=c;

Welcome Analysis start Original sources General | 1@ | ouput

Variables Name Declaration  Value
4 call#main@1:loop@6=241/256

Al0] main {10}
Al main 20}
A2 main {30}
ABl main (40}
A4 main {50}
Al5] main {60}

= A6l main (70}

Invariant at l.c: 11.6

Output Summary ‘Watch

Figure 2: Astrée variable ranges display.
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source code location for which an alarm has been
produced repositions the focus of the output win-
dow to show the corresponding alarm message. In
the output window alarm locations are collected in
the order in which they are reached by the analyzer.
This is very helpful for alarm investigation since fix-
ing one alarm usually causes several subsequent
alarms to disappear. The call graph of the software
under analysis is visualized taking function pointer
calls into account; an example call graph is shown
in Fig. 3.

Figure 3: Astrée Call graph visualization.

4. Astrée Domains

Astrée offers a variety of predefined abstract do-
mains. In this section the most important ones are
shortly summarized and illustrated with examples?.
The memory abstract domain is an abstraction of
sets of concrete memory states whose elements,
called abstract environments, map variables to ab-
stract cells. An abstract cell can represent one or
several scalar variables, an expanded array cell, a
folded array cell (cf. Sec. 5.1), or a structure field.
The memory domain empowers Astrée to exactly
analyze pointer arithmetics, as well as struct and
union manipulations. In the following example, As-
trée can prove both assertions to be correct:

typedef struct _x {
unsigned int a: 1;
unsigned int b: 1;
} bit ;

void main( ){

bit z ;
z.b =0 ;
z.a=1;

__ASTREE_assert((z.a == 1));
}

Pointers are supported both for functions and for
data; efficiency and precision are enhanced by sev-
eral domains covering symbolic information. Thus,
Astrée reports zero alarms on:

struct s { struct sx next; int data; } ;
struct s A[100];

2The analysis time for all examples shown was below 1 sec on
a 2.4 GHz Centrino 2 laptop.
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void main()
{
int i=0;
struct s xptr;
for (i=0; i<199; i++) {
if (i<99)
A[i].next=&(A[i+1]);
else
A[i-99].data=1i;
}
A[99] .next=0; A[99].data=99;
ptr = &(A[0]);
while (ptr !'=0) {
ptr = ptr->next;
}
}

The interval domain approximates variable values
by intervals. The octagon domain [23] covers re-
lations of the form x &=y < ¢ for variables x and y
and constants c. Compared to the full polyhedron
domain [4] covering convex polyhedra of the form
Zil\il a;x; < c it has the advantage that is signifi-
cantly faster and supports floating-point arithmetics
[2]. In the example program below the relation be-
tween X and Y is automatically discovered so that
Astrée can show the absence of overflows and can
prove the assertion that X<=Y.

void main()
{
int X=100000,Y=1000000;
while (X >= 0) {
X--;Y--;
}
__ASTREE_assert((X<=Y));
}

The modulo-interval domain enables a precise anal-
ysis of overflows on two’s complement hardware.
This is especially useful for code automatically
generated by dSPACE TargetLink [9] with the
”“compute-through-overflow” technique [15]. Con-
sider the following example:
short x,y;
__ASTREE_volatile_input((x, [-1,11));
__ASTREE_volatile_input((y, [-1,11));
void main()
{

short z;

z = (short) ((unsigned short)x +

(unsigned short)y);

}
Astrée emits three alarms because of overflows on
explicit typecasts but computes the correct value
range for z, i.e., z€[-2,2]5.
Floating-point computations are precisely modelled
while keeping track of possible rounding errors

3To support overflow-safe code generators, Astrée can be con-
figured not to emit alarms for explicit typecasts.
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[22]. Most static analyzers either do not handle
floats or handle them incorrectly because they are
based on mathematical properties of real numbers
not valid for floats. For example (x +a) — (x —a) =
24 is not valid for floats:

#include <stdio.h>

int main () {
double x; float a,y,z,rl,r2;
a=1.0; x = 1125899973951488.0;
y = x+a; z = Xx-a;
rl =y - z; r2 = 2xa;
printf("(x+a)-(x-a) = %f\n", rl);
printf("2a = %f\n", r2);

}

The output produced is:

(x+a)-(x-a) = 134217728.0000
2a = 2.0000

The double value x is just in the middle of two con-
secutive floating-point numbers to which, respec-
tively, x-1 and x+1 will be rounded in round-to-
nearest mode. Astrée considers the worst-case of
all rounding modes and will always safely overesti-
mate rounding errors so that fatal losses of preci-
sion leading to overflows are detected.

The clock domain has been specifically developed
for synchronous control programs and supports re-
lating variable values to the system clock [6].

With the filter domain [14] digital filters can be pre-
cisely approximated. In the following example the
current output P is a function of the two previous
outputs S[0, 1], the current input X and the two pre-
vious inputs E[0,1]. Astrée warns about the non-
terminating loop but does not issue any alarm and
thus can automatically prove the absence of run-
time errors. The value range computed for P is
[—1418.3827,1418.3827].

typedef enum {
FALSE = 0,
TRUE =1
} BOOLEAN;

BOOLEAN INIT;
float P, X;

void filter ()
{
static float E[2], SI[2];
if (INIT) {
S[0] = X;
P =X;
E[O] = X;
} else {
P = (((((0.5%X)-(E[0]%0.7))+(E[1]%0.4))
+(S[01%1.5))-(S[11%0.7));
}
E[1] = E[0O];
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E[0]
S[1]
S[0]

X;
S[0];
P;

}

void main ()
{
X =5;
INIT = TRUE;
while (1) {
X =0.9 x X + 35;
filter ();
INIT = FALSE;
}
}

5. Parameterizing Astrée

The C99 standard does not fully specify data type
sizes, endianness nor alignment. An integer can be
represented either by a sign and an absolute value,
by one’s complement, or by two’s complement. Ad-
ditionally there are operating system dependencies,
e.g., whether global or static variables are automat-
ically initialized to zero, or not. Astrée is informed
about these target settings by a dedicated config-
uration file and takes the specified properties into
account.

Astrée can be adapted to specific program fami-
lies in order to improve analysis precision. The key
feature here is that Astrée is fully parametric with
respect to the abstract domains: by selecting the
set of active domains the analyzer can focus on the
domains relevant to the software under analysis.
Moreover Astrée can be extended by new abstract
domains so that specific requirements of individual
applications can be addressed®*.

In addition to the application domain awareness,
there are two mechanisms for adapting Astrée to
individual programs. First, abstract domains can
be parameterized to tune the precision of the anal-
ysis for individual program constructs or program
points [21]. Second, there are annotations for mak-
ing external information available to Astrée. Both
are presented in this section.

As current experience shows the parameterization
of the programs under analysis rarely has to be
changed when the analyzed software evolves over
time. So in contrast e.g., to theorem provers the
parameterization is very stable.

5.1 Parameterization of Abstract Domains

4Note that while, in general, the specialization of Astrée is
under user control, incorporating new domains requires a new
release of Astrée.
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Let us illustrate the parameterization of abstract
domains with two examples: semantic loop un-
rolling and variable smashing. They allow to tune
the precision of the analyzer to the software under
analysis, i.e., to analyze critical program parts with
high precision, and improve speed by lowering the
precision for uncritical program parts.

Semantic loop unrolling [21] enables the analyzer
to distinguish different iterations of a loop to im-
prove analysis precision. When a loop is unrolled
n times, individual invariants are computed for the
first n iterations and all subsequent iterations are
summarized by a common invariant. In general, the
analysis will become more precise with increasing
unrolling and the analysis time will grow. Users can
specify a default unrolling factor which can be over-
ridden for individual loops by the __ASTREE _unroll
directive. Astrée also offers a heuristic loop un-
rolling which automatically determines suitable un-
rolling factors. In the following example:

int main()
{
int i=0;
char c=0;
char A[255];
for (i=0; i<255; i++) {
if (i<10)
c+=10;
else if (i<100)
C++;
Alil=c;
}
}

automatic unrolling enables Astrée to report no
alarms and to precisely compute the values of ¢ and
of each cell of A at the program exit.

For large aggregate variables, it would be ineffi-
cient to represent each scalar component with a
distinct object in Astrée. Variable smashing en-
ables Astrée to use one single summary cell to rep-
resent the value of many cells at different mem-
ory locations. This results in a loss of precision
but can improve memory consumption and analy-
sis time. In general, Astrée supports partial vari-
able folding, e.g., an array inside a structure can
be folded without folding the rest of the struc-
ture. Arrays are automatically smashed when their
size exceeds a certain global threshold that can be
changed with the smash-threshold option. It is
possible to locally override this setting for individ-
ual arrays by a dedicated directive. The directive
__ASTREE_smash_variable((V,n)) indicates that
all arrays with n or more elements in the variable
V should be folded. In the following example:

struct {
int nb;
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int tab[10];
struct { int x; int tab2[30]; } tab3[2];
}oa;

__ASTREE_smash_variable((a,4));

the arrays tab and tab2 will be folded, but not the
array tab3.

5.2 Semantic Hypotheses

Astrée assumes that the value of volatile vari-
ables can change asynchronously at any program
point. However, the volatile declaration some-
times is also used for non-volatile variables to pre-
vent the compiler from performing certain optimiza-
tions. Therefore Astrée offers options for ignoring
the volatile keyword for global, resp.local variables.
With the directive __ASTREE_volatile_input((V))
individual variables V can be declared as volatile
even when the volatile keyword is ignored. It also
supports taking into account some hypotheses on
the possible values of the volatile variables; then
the analysis assumes that their values can change
asynchronously but will always stay within the spec-
ified bounds. The directive can target global, static
and local variables and also supports structured
variables. It is possible to mix volatile and non-
volatile fields in the same structure. In the exam-
ple:
typedef volatile int t;
struct {

volatile int x;

ty;

int v;

volatile int z[2];

int *A;
}oa;
the following parts of a are volatile: a.x, a.y,
a.z[0],and a.z[1].

The directive __ASTREE_assert((B)) tells Astrée to
check whether the Boolean expression B is always
true at this program point. If there is a context
where B may evaluate to false, Astrée produces an
alarm.

With the directive __ASTREE_known_fact((B))
users can make additional knowledge available to
Astrée, where B is a Boolean expression in C syn-
tax without side effects. Astrée then assumes that
at the program point of the directive the condi-
tion B is satisfied without checking this hypothe-
sis. However, if Astrée can prove that B is always
false, it issues a warning. A simple example is
__ASTREE_known_fact((i>0)).

All specified hypotheses are summarized in the re-
port file. This way, all conditions that have to be
satisfied for the analysis result to be valid, are doc-
umented with the analysis result. When the execu-
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tion conditions of the program change, it is enough
to check whether these directives are still valid,
and, if not, run a new analysis with updated hy-
potheses.

6. Qualification Support

Ideally, Astrée should be continually used during
the software development process. This way, po-
tential runtime errors are detected early which con-
tributes to preventing late-stage design or integra-
tion problems. In the validation stage the goal is
to verify that no runtime errors may occur. To be
amenable for certification according to DO-178B,
analysis tools have to be qualified [26]. The qual-
ification process can be automated to a large de-
gree by a Qualification Support Kit, which currently
is under development. A qualification kit consists
of a report package and a test package. The re-
port package lists all functional requirements and
contains a verification test plan describing one or
more test cases to check each functional require-
ment. The test package contains an extensible set
of test cases and a scripting system to automatically
execute all test cases and evaluate the results. The
generated reports can be submitted to the certifica-
tion authority as part of the DO-178B certification
package.

7. Practical Experience

Astrée has been used in several industrial avion-
ics and space projects. One of the examined soft-
ware projects from the avionics industry comprises
132,000 lines of C code including macros and con-
tains approximately 10,000 global and static vari-
ables [2]. The first run of Astrée reported 1200
false alarms; after adapting Astrée the number of
false alarms could be reduced to 11. The analysis
duration was 1h 50 min on a PC with 2.4 GHz and
1GB RAM.

[7] gives a detailed overview of the analysis pro-
cess for an Airbus avionics project. The software
project consists of 200,000 lines of preprocessed
C code, performs many floating-point computations
and contains digital filters. The analysis duration
for the entire program is approximately 6 hours on
a 2.6 GHz PC with 16 GB RAM. At the beginning,
the number of false alarms was 467 and could be
reduced to zero in the end.

8. Conclusion and Outlook

Software errors in safety-critical embedded systems
can cause severe damage. Development standards
like DO-178B or ISO-26262 increasingly demand to
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demonstrate the absence of software errors. Soft-
ware tools based on static program analysis offer
a complete coverage and can contribute to signifi-
cantly reducing testing effort. Here it is important
to achieve a high analysis precision in order to keep
the number of false alarms low. An analyzer should
give detailed information about occurring alarms to
help the user understand the reasons of the alarm.
Furthermore the analyzer should be parameteriz-
able so that users can tune the analyzer for the soft-
ware and can eliminate false alarms.

Astrée has been specifically designed to meet these
requirements: the analysis time scales well even for
industrial applications with several 100KLOC. Even
with default settings it produces only a small num-
ber of false alarms for control/command programs
written in C. Since human alarm investigation is a
time consuming task, this is essential for keeping
the analysis effort at a reasonable level. Addition-
ally Astrée supplies developers with all required in-
formation to understand the reasons of alarms and
provides them with enough options and directives
to help reduce this number significantly. Thus, in
contrast to many other static analyzers Astrée can-
not only be used to detect runtime errors, but to ac-
tually prove their absence. Industrial synchronous
real-time software from the avionics industry could
be successfully analyzed by Astrée with zero false
alarms.
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