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Abstract

In automotive, railway, avionics and healthcareustdes more and more functionality is implemertgémbedded
software. A failure of safety-critical software maguse high costs or even endanger human beings. fat
applications which are not highly safety-criticad, software failure may necessitate expensive update
Contemporary safety standards — including DO-17188;178C, IEC-61508, 1ISO-26262, and EN-50128 — nequi
to identify potential functional and non-functiorfedzards and to demonstrate that the software miategolate the
relevant safety goals. For ensuring functional paiog properties automatic or model-based testing, farmal
techniques like model checking become more and mudely used. For non-functional properties ideyiti§ a
safe end-of-test criterion is a hard problem sifaderes usually occur in corner cases and full teserage cannot
be achieved. For some non-functional program ptagsethis problem is solved by abstract interpretabased
static analysis techniques which provide full cohtaind data coverage and yield provably correatltesin this
article we focus on static analyses of worst-casz@tion time, stack consumption, and runtime strahich are
increasingly adopted by industry in the validatand certification process for safety-critical sadte. First we will
give an overview of the most important safety sgadd with a focus on the requirements for non-fionet
software properties. We then explain the methodplafgabstract interpretation based analysis toals identify
criteria for their successful application. The gregion of static analyzers in the development @sscrequires
interfaces to other development tools, like codeegators or scheduling tools. Using them for cegtfon requires
an appropriate tool qualification. We will addressh of these topics and report on industrial ezpee.

Introduction

The use of safety-critical embedded software in dbtomotive, avionics and healthcare industrieBiéseasing
rapidly. Failures of such safety-critical embeddgdtems may create high costs or even endangerrhbeiags.
Also for applications which are not highly safetjtical, a software failure may necessitate expensipdates.
Therefore, utmost carefulness and state-of-théeahniques for verifying software safety requiretsdmave to be
applied to make sure that an application is workiraperly.

Classical software validation methods like codeie®wvand testing with debugging cannot really gutgarthe
absence of errors. Formal verification methods jg®wan alternative, in particular for safety-crti@pplications.
One such method &bstract interpretation (ref. 6), which allows to obtain statements that\aalid for all program
runs with all inputs. Such statements may be aleseficviolations of timing or space constraints,atassence of
runtime errors. Static analysis tools are in indaktuse that can detect stack overflows, violatmitiming
constraints (ref. 25), and can prove the absencentime errors (ref. 8).

The advantage of static analysis based techniguisi they enable full control and data coverage at the same
time can reduce the test effort. For approachesdas test and measurement identifying end-ofdsgtgria for
non-functional program properties like timing, #asize, and runtime errors is an unsolved problém.
consequence the required test effort is high, éststrequire access to the physical hardware ancetults are not
complete. In contrast, static analyses can be yusoftware developers from their workstation congputhey can
be integrated in the development process, e.gmaodel-based code generators, and allow developedgtect
runtime errors as well as timing and space bugsity product stages. From a methodological pdiniew, static
analyses can be seen as equivalent to testingfwitboverage. For validating non-functional prograroperties
they define the state-of-the-art technology.

In the following we will give an overview of the msibimportant safety standards with a focus on duglirements
for non-functional software properties. Then we lakpthe basic methodology of static analysis aresent the
underlying concepts of tools from three differepplécation areas: aiT for worst-case execution tiamalysis,
StackAnalyzer for stack usage analysis and Astiéeuhtime error analysis. Industrial experiencetummarized in
Section 6 and Section 7 concludes.



Safety Standards

Safety standards like DO-178B (ref. 24), DO-1783461508 (ref. 15), 1ISO-26262 (ref. 16) and EN-5R{2f. 5)

require to identify functional and non-functionazards and to demonstrate that the software ddedaiate the
relevant safety goals. Examples for important namzfional safety-relevant software characteristios runtime
errors, execution time and memory consumption. Ddjpg on the criticality level of the software thbsence of
safety hazards has to be demonstrated by formdiadstor testing with sufficient coverage. In théolwing, we

give a short overview on the assessment of nontifured program properties by the safety standands¥ionics,

space, automotive and railway systems, for gertgleadtric/Electronic systems, and for medical sofevaroducts.

DO-178B/DO-178CPublished in 1992, the DO-178B (ref. 24) (“Softev&onsiderations in Airborne Systems and
Equipment Certification”), is the primary documdayt which the certification authorities such as FAK EASA
approve all commercial software-based aerospaderags The purpose of D0O-178B is “to provide guicketi for
the production of software for airborne systems aqdipment that performs its intended function védtkevel of
confidence in safety that complies with airworttiseequirements”. The software levels defined aeeLA (most
critical) to Level E (least critical).

The DO-178B emphasizes the importance of softwardication. Verification is defined as a techniealsessment
of the results of both the software developmentgsses and the software verification process. Geaf the DO-
178B states that “verification is not simply tesgtifmesting, in general, cannot show the absencarofs.” The
standard consequently uses the term "verify” irtte "test” when the software verification procesgectives
being discussed are typically a combination ofeed, analyses and test. The purpose of the softveaifcation
process is to detect and report errors that mag eeen introduced during the software developmestgsses.
Removal of the errors is an activity of the softevalevelopment processes. The general objectivésedoftware
verification process are to verify that the requients of the system level, the architecture lethed, source code
level and the executable object code level aresfgadi and that the means used to satisfy thesectgs are
technically correct and complete. At the code |dhel objective is to detect and report errors thay have been
introduced during the software coding process. Tmba-functional safety properties are explicitly rtiened,
including stack usage, worst-case execution timaimg) absence of runtime errors.

The DO-178C, due to be finalized in 2011, will beeaision of DO-178B to bring it up to date withspect to
current software development and verification texdtbgies. It specifically focuses on model-basedtvemfe
development, object-oriented software, the usecaratdification of software tools and the use of fatrmethods to
complement or replace dynamic testing (theoremipgyymodel checking, and abstract interpretation).

IEC-61508 Edition 2.0in 2010 a new revision of the functional safetgnstard IEC-61508 has been published,
called Edition 2.0 (ref. 15). It sets out a geneproach for all safety lifecycle activities forsgems comprised of
electrical and/or electronic and/or programmablectebnic (E/E/PE) elements that are used to perfeafiety
functions. The safety integrity levels are calleldl1S(least critical) to SIL4 (most critical). Theon-functional
program properties are part of the software safetyiirements specification, including invalid, aftrange or
untimely values, response time, best case and wasst execution time, and overflow and underflowait storage
capacity. The IEC-61508 states that verificatiodudes testing and analysis. In the software \aifon stage,
static analysis techniques are recommended for Sihd highly recommended for SIL2-SIL4. Among these
techniques, data flow analysis is highly recommende SIL2-SIL4, static analysis of runtime errorhlagior
recommended in SIL1-SIL3 and highly recommendedlib4, and static worst-case execution time analisis
recommended in SIL1-4. Among the criteria to besidered for selecting specific techniques is thegleteness
and repeatability of testing, so where testingsedy completeness has to be demonstrated. Thesre§wabstract
interpretation based static analyses are consideneathematical proof; their reliability is ratedximal (R3).

The IEC-61508 also provides requirements for migetieality systems: “Where the software is to iplent
safety functions of different safety integrity Ié&svethenall of the software shall be treated as belonginghto t
highest safety integrity level, unless adequateependence between the safety functions of the different safe
integrity levels can be shown in the design. Itldbe demonstrated either (1) that independenegtiseved by both

in the spatial and temporal domains, or (2) that any violation of independence is colfeéd. The justification for
independence shall be documented”. This has sigimifi consequences for hardware selection and system
configuration: it has to be ensured that therererainpredictable timing-related interferences whialght affect
real-time functions. Cache-related preemption ¢gsfseline effects, and timing anomalies have tadien into
account. For multicore processors it has to be shinat there are no inherent timing interferencetsvben cores —




which are quite common, e.g., due to collisionsshared memory buses between cores, or due to shacbé
levels (ref. 7). For achieving temporal independetie standard suggests deterministic schedulirthads. One
suggestion is using a cyclic scheduling algorithhicl gives each element a defined time slice supgdry worst
case execution time analysis of each element tamdstrate statically that the timing requirementsgach element
are met. Other suggestions are using time triggerelitectures, or strict priority based schedulmglemented by
a real-time executive (ref. 15).

ISO-26262:1S0O-26262 (Road vehicles — Functional safety). (&) is the adaptation of the Functional Safety
Standard IEC-61508 for Automotive Electric/ElecimiBystems. The current version is a draft whichi e
published as an international standard in mid-20ddlacing the IEC-61508 as formal legal norm fad vehicles.
It requires functional and non-functional hazardse identified, and it requires demonstrating tihat software
does not violate the relevant safety goals. The-28@62 defines four Automotive Safety Integrity kés; ASIL A
(lowest) to ASIL D (highest). Section 5.4.8. ofrP@ (ref. 16) lists criteria for selecting suitahinodeling and
programming languages. They include support forexidbd real-time software and runtime error handlihgs
highly recommended to exclude language construbishamight result in unhandled runtime errors. Wiising
the C programming language this implies using ttmdemonstrate the absence of runtime errors.

A further demand of 1SO-26262 is that the timingnstoaints of time-critical functions have to be emd by the
specification of the software safety requiremehiste, especially the response time at the systesi las to be
considered (cf. Section 3.2). During the developmaithe software architectural design upper bouafishe
required resources for the embedded software Itatse given. The resources explicitly mentionedtwey standard
include execution time and storage space. Duringtesting and integration testing bounds on exeauime and
memory consumption have to be established. Amoegv#rification techniques listed by 1SO-26262 aeis
analysis techniques, which are recommended orhigicommended for all ASIL levels.

CENELEC prEN-50128The CENELEC EN-50128 currently is under revisioheTcurrent draft (ref. 5) provides a
set of requirements with which the development,l@gpent and maintenance of any safety-related swéw
intended for railway control and protection appiicas shall comply. It addresses five software tyafietegrity
levels — from SILO (lowest) to SIL4 (highest) — addntifies and lists appropriate techniques andsuges for each
level of software safety integrity.

Static analysis based on abstract interpretatign,applied to worst-case execution time analysis rantime error
analysis, belongs to the referenced techniquess lhighly recommended for SIL3/SIL4, recommended fo
SIL1/SIL2 and should be applied throughout the tgument process: in the software validation stéige software
integration test, software/hardware integration &esl software component test.

Regulations for Medical Softwar&tandards relevant for medical software are the6B801 and IEC-62304. The
EN-60601 formulates requirements for the softwé#fiecycle and risk management (ref. 32). The stahd&C-
62304 describes a lifecycle for software developmeith a focus on maintenance and on componentimie
software architectures (ref. 29).

Beyond these standards country-specific requiresnesne to be respected. In the following we withrsly discuss
the American and German regulations. The presentaif the US regulations follows reference 31. Bafte
validation is a requirement of the Quality Systesgulation (cf. Title 21 Code of Federal Regulati¢G8sR) Part
820, and 61 Federal Register (FR) 52602, respégtivi¥/alidation requirements apply to software usasl
components in medical devices, to software thaséef a medical device, and to production softwaferification
“means confirmation by examination and provisionobfective evidence that specified requirementsehiaeen
fulfilled” (ref. 34). In a software development éronment, software verification is confirmation thle output of a
particular phase of development meets all of thmtirequirements for that phase. While softwardirtgsis a
necessary activity, in most cases software teftjnitself is not considered sufficient to establisimfidence that the
software is fit for its intended use. Additionakiieation activities are required, including staéinalysis.

In Europe, the validation of medical software hasfdllow the EU-directive 2007/47/EC (ref. 30), whij in
Germany has been incorporated into national la®0h0 (ref. 33). It states that software in its orght, when
specifically intended to be used for medical pugydsas to be considered a medical device. For egvichich
incorporate software or which are medical softwaréhemselves, the softwansust be validated according to the
state of the art.

Abstract Interpretation




Static data flow analyses compute invariants férpabgram points by fixed point iteration over tpeogram
structure or the control-flow graph. The theory albstract interpretation (ref. 6) offers a semartizsed
methodology for static program analyses. The caagemantics is mapped to an abstract semantiabdiyaction
functions. While most interesting program propeartire undecidable in the concrete semantics, tlstraab
semantics can be chosen for them to be comput@hke static analysis is computed with respect to #estract
semantics. Compared to an analysis of the cona@teantics, the analysis result may be less prdmnisehe
computation may be significantly faster. By skillfiefinition of the abstract domains a suitablel¢raff between
precision and efficiency can be attained.

For program validation there are two essential prigs of static analyzersoundness andsafety. A static analysis
is calledsound if the computed results hold for any possible prog execution. Abstract interpretation supports
formal correctness proofs: it can be proved thaarmelysis will terminate and that it is sound,,iteat it computes
an overapproximation of the concrete semantica.dafe static analysis imprecision can occur, but it barshown
that imprecisions will always occur on the safeesid

Let’s illustrate this with two application scenaidn runtime error analysis, soundness meansthigaanalyzer
never omits to signal an error that can appeammesexecution environment. If no potential errosignaled,
definitely no runtime error can occur: there ardaise negatives. If a potential error is reported,analyzer cannot
exclude that there is a concrete program execttiggering the error. If there is no such executitis is a false
alarm (false positive). This imprecision is on #ade side: it can never happen that there is @amergrror which is
not reported. In WCET analysis, soundness meamnghbacomputed WCET bound holds for any possibégam
execution. Safety means that the only imprecisimtuaing is overestimation: the WCET will never be
underestimated.

3.1 Stack Usage Analysigt possible cause of catastrophic failure is a stae&rflow which might cause the
program to behave in a wrong way or to crash att@geWhen they occur, stack overflows can be baiagnose
and hard to reproduce. The problem is that the mgracea for the stack usually must be reservedhey t
programmer. Underestimation of the maximum stacgadeads to stack overflow, while overestimatiosans
wasting memory resources. Measuring the maximurkstaage with a debugger is no solution since amg o
obtains a result for a single program run with dixaput. Even repeated measurements with varigustsncannot
guarantee that the maximum stack usage is evenause

The tool StackAnalyzer from Absint employs a gloBdibased static program analysis to compute safgeu
bounds on the maximal stack usage of tasks. The mpiit of StackAnalyzer is the binary executalilee analysis
does not require any code modification and doegelgton debug information. The results are indejeemn from
flaws in the debug output and refer to exactlysame code as in the shipped system. First, theatdlaw graph
(CFQG) is reconstructed from the input file, thedsinexecutable. Then a static value analysis coespedlue ranges
for registers and address ranges for instructiamessing memory. By concentrating on the valuehef gtack
pointer during value analysis, StackAnalyzer coraputow the stack increases and decreases alongtioeis
control-flow paths.

This information can be used to derive the maxinsiatk usage of the entire task. StackAnalyzer téhesntire
application into account and interprocedurally gme$ each call site with its precise stack heighe results of
StackAnalyzer are presented as annotations in d&ioaah call graph and control-flow graph (cf. Fige It shows
the critical path, i.e., the path on which the maxin stack usage is reached which gives importauhiack for
optimizing the stack usage of the application uradelysis.

Figure 1 — Call graph and control-flow graph witack analysis results
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3.2 WCET Analysis: Worst-Case Execution Time Prigalic Many tasks in safety-critical embedded systems have
hard real-time characteristics. Failure to meettieas may be as harmful as producing wrong outpdtilure to
work at all. Yet the determination of the Worst-Edsxecution Time (WCET) of a task is a difficultoptem
because of the characteristics of modern softwadlehardware (ref. 27).

Embedded control software (e.g., in the automoitivistries) tends to be large and complex. Thenso# in a
single electronic control unit typically has to pide different kinds of functionality. It is usugldeveloped by
several people, several groups or even severardiff providers. Code generator tools are widegdudhey
usually hide implementation details to the devets@and make an understanding of the timing behafitiie code
more difficult. The code is typically combined withird party software such as real-time operatiygfesms and/or
communication libraries.

Concerning hardware, there is typically a large gafween the cycle times of modern microprocesaats the
access times of main memory. Caches and brancktthrdfers are used to overcome this gap in virguall
performance-oriented processors (including higHeperance micro-controllers and DSPs). Pipelinesbkna
acceleration by overlapping the executions of d#ifié instructions. Consequently the execution bemasf the
instructions cannot be analyzed separately sindegends on the execution history. Cache memosieally work
very well, but under some circumstances minimalnglea in the program code or program input may kead
dramatic changes in cache behavior. For (hardjimealsystems, this is undesirable and possibly éaardous.
Making the safe yet — for the most part — unrdaliassumption that all memory references lead theanisses
results in the execution time being overestimateddveral hundred percent.

The widely used classical methods of predictingcasien times are not generally applicable. Softwanitoring
and dual-loop benchmarks modify the code, whichuim changes the cache behavior. Hardware simualatio
emulation, or direct measurement with logic analyzmn only determine the execution time for somxedfinputs.
They cannot be used to infer the execution timealfgossible inputs in general.

In contrast, abstract interpretation can be usexfficiently compute a safe approximation for akpible cache and
pipeline states that can occur at a program paiainy program run with any input. These resultslmamombined
with ILP (Integer Linear Programming) techniques gafely predict the worst-case execution time and a
corresponding worst-case execution path. A surfapethods for WCET analysis and of WCET tools igegi in
(ref. 28).

Absint’'s timing verifier aiT (ref. 11) has been dsby NASA as an industry-standard static analysi for
demonstrating the absence of timing-related so#tvelafects in the Toyota Motor Corporation Unintehdecel-
eration Investigation (ref. 23). It computes a saiper bound for the WCET of a task, assuming merfierence
from the outside. Effects of interrupts, |0 andemgco-)processors are not reflected in the predicuntime and
have to be considered separately within system-tewang analysis. The main input of aiT is the dip executable.
Like StackAnalyzer the analysis does not requing @de modification and does not rely on debugrimttion.
The results are independent from flaws in the dedwutgut and refer to exactly the same code aseénstiipped
system. aiT determines the WCET of a program taskeveral phases (ref. 12), which makes it possiblese
different methods tailored to each subtasks (r&f. RBirst, the control-flow graph (CFG) is reconsted from the
input file, the binary executable. Then value asialycomputes value ranges for registers and addaeges for
instructions accessing memory; a loop bound armlgistermines upper bounds for the number of itaratiof
simple loops. Subsequently, a cache analysis fiessnemory references as cache misses or hitsl@fand a




pipeline analysis predicts the behavior of the pogon the processor pipeline (ref. 17). Finally gath analysis
determines a worst-case execution path of the prodref. 26).

Figure 2 — Call graph and basic-block graph with BNGesults
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The results of aiT are reported as annotationalingcaphs and control-flow graphs (cf. Fig. 2)das report files in
text format and XML format. The overall WCET bourfegimations for sequential code pieces can also be
communicated to the system-level analyzer SymTA¢E (4), which computes worst-case response tfnoes the
sequential WCETS, taking into account interruptd sk preemptions.

aiT is available for a wide range of 16-bit andt8@microcontrollers. In general, the availabildfysafe worst-case
execution time bounds depends on the predictalifitthe execution platform. Especially multicoreldtectures
may exhibit poor predictability because of essdigti@on-deterministic interferences on shared resesiwhich can
cause high variations in execution time. Referericgives a more detailed overview and suggests ekeamp
configurations for available multicores to supsigtic timing analysis.

3.3 Runtime Error AnalysisAnother important goal when developing criticalta@fre is to prove that no runtime
errors can occur. Examples for runtime errors l@ihg-point overflows, array bound violationsyidion by zero,
or invalid pointer accesses. A well-known examplethe possible effects of runtime errors is thplesion of the
Ariane 5 rocket in 1996 (ref. 18).

As detailed above, software testing can be usegtect errors, but not to prove their absence.sliteess of static
analysis is based on the fact that safe overappetions of program semantics can be computed.finme error
analysis this means that the analysis result &tagement x will be either “(i) statement x willtreause an error”, or
“(ii) statement x may cause an error”. This impseam allows to compute results in acceptable tieven for large
software projects. In the first case, the userrelyhon the absence of errors, in the second déser en error has
been found, or there was a false alarm.

Each alarm has to be manually investigated to oeter whether there is an error which has to beected, or
whether it was just a false alarm. If all the alanmaised by an analysis have been proved to be, flen the proof
of absence of runtime errors is completed. Thidccbe checked manually, but the problem is thahsutiuman
analysis is error-prone and time consuming, espg@mce there might be interdependencies betwbenfalse
alarms and in some cases deviations from the @atdmay be willingly accepted. Therefore the nundf@larms
should be reduced to zero, since then the absdroatame errors is automatically proved by the lgper run. To
that end, it is important that the analyzer is @®ci.e., produces only few false alarms. This @aly be achieved
by a tool that can be “specialized” to a classrafpprties for a family of programs. Additionallyetanalyzer must
be parametric enough for the user to be able te-tfine the analysis of any particular program &f tamily.
General software tools not amenable to speciatimatisually report a large number of false alarmglwvis the
reason why such tools are only used in industgetect runtime errors, and not to prove their absen
Additionally the analyzer must provide flexible atation mechanisms to communicate external knovdddghe
analyzer. Only by a combination of high analyzezgsion and support for semantic annotations tte gbzero




false alarms can be achieved. A prerequisite isub@rs get enough information to understand thsecaf an alarm
so that they can either fix the bugs or supplyrtiesing semantic information.

Astrée (Analyseur statique de logiciels temps-sfabarqués) (ref. 1) has been specifically desidoedeet these
requirements: it produces only a small number Isefalarms for control/command programs writte@iaccording
to “ISO/IEC 9899:1999 (E)” (C99 standard) (ref. Apd it provides the user with enough options ainddtives to

help reduce this number significantly. Thus, intcast to many other static analyzers Astrée caanlytbe used to
detect runtime errors, but to actually prove tlabisence.

Astrée (ref. 3) can be adapted to the softwareeptajnder analysis in order to improve analysigipien. The key
feature here is that Astrée is fully parametrichwigéspect to the abstract domains. There is atyasfepredefined
abstract domains, including the following ones: Tiiterval domain approximates variable values hgrivals. The
octagon domain (ref. 22) covers relations of thenfaty<c for variables x and y and constants c. Floatioigp
computations are precisely modeled while keepiagktof possible rounding errors (ref. 21). The mgnmomain

empowers Astrée to exactly analyze pointer aritibeeand union manipulations. The clock domain hasnb
specifically developed for synchronous control pemgs and supports relating variable values to yseem clock.
With the filter domain (ref. 13) digital filters nabe precisely approximated. Based on inspectipgrted false
alarms the abstract domains can be stepwise refored given program class. It is also possibléntmorporate
additional abstract domains into Astrée (ref. 2).

In a further step, there are two mechanisms foptaua Astrée to individual programs from a progriamily. First,

abstract domains can be parameterized to tunerdasn of the analysis for individual program stocts or
program points (ref. 19). This means that in oredyais run important program parts can be analyeed precisely
while less relevant parts can be analyzed veryktyie without compromising system safety. Seconer¢hare
annotations for making external information avadigalo Astrée in a well-defined and concise way. dsrent

experience shows the parameterization of the pnogiander analysis rarely has to be changed whearthlgzed
software evolves over time. So in contrast e.gthé@rem provers the parameterization is very stabl

Figure 3 — Astrée user interface
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The alarms reported by Astrée can be interactivelestigated (cf. Fig. 3) by checking the alarm sgu
investigating variable values, the relevant contesdwsing the call stack, etc. The call graphhaf &pplication can
be interactively explored.

Integration in the Development Process

Static analysis tools are not only applicable atwhlidation and verification stage but also duting development
stage. One advantage of static analysis methodlsaisno testing on physical hardware is requiredusTthe
analyses can be called just like a compiler fromoakstation computer after the compilation or limiistage of the
project. For all tools mentioned in Sec. 3, aiTacRAnalyzer, and Astrée, there are batch versiao#ithting the
integration in a general automated build processs €nables developers to instantly assess theteféé program



changes on WCET and stack usage and runtime eDefects are detected early, so that late-staggiiation
problems can be avoided. Furthermore there arecmablings of aiT and StackAnalyzer with model-lthsede
generators (e.g. Esterel SCADE (ref. 9) or ETAS E3Tand with system-level scheduling tools (e.gm$p/S
(ref. 14)). Such couplings enable a seamless iatiegr of static analysis tools in the developmentpss.

Tool Qualification

In the validation stage the goal is to verify thhé stack limits or worst-case execution time bauod the

application are not exceeded and that no runtirersemay occur. Both aiT and StackAnalyzer havesssfully

been qualified as analysis tools according to DOBLhe qualification process can be automatediéoge degree
by Qualification Support Kits. Qualification kitseaavailable for aiT and StackAnalyzer, a qualtfima support kit
for Astrée has been announced. The kits consiatreport package and a test package. The repdagedists all
functional requirements and contains a verificattest plan describing one or more test cases tekckach
functional requirement. The test package contaimsegtensible set of test cases and a scriptingeisysb

automatically execute all test cases and evaluaeresults. The generated reports can be subntitteithe

certification authority as part of the certificatipackage.

Experience

In recent years tools based on static analysis peweed their usability in industrial practice atl,consequence,
have increasingly been used by avionics, automativé healthcare industries. In the following weortsome
experiences gained with aiT WCET Analyzer, Stack$arer and Astrée.

StackAnalyzer results are usually precise for amgrgprogram path. Statements about the precidiailoare hard
to obtain since the real WCET is usually unknowntfgical real-life applications. For an automotiagplication
running on MPC 555, the results of aiT have bed9% above the highest execution times observedsirias of
measurements (which may have missed the real WQF)an avionics application running on MPC 755bAs
has noted that aiT's WCET for a task typically soat 25% higher than some measured execution tforethe
same task, the real but non-calculable WCET baingetween (ref. 25). Measurements at Absint hadeated
overestimations ranging from 0% (cycle-exact préain) till 10% for a set of small programs runniag M32C,
TMS320C33, and C166/ST10.

Astrée has been used in several industrial avicamcsspace projects. One of the examined softwajeqs from
the avionics industry comprises 132,000 lines @b@e including macros and contains approximate|9ad®global
and static variables (ref. 3). The first run of st reported 1200 false alarms; after adaptingé&sttne number of
false alarms could be reduced to 11. The analysiation was 1h 50 min on a PC with 2.4 GHz and 1RFBJ.
The report (ref. 8) gives a detailed overview dof timalysis process for an Airbus avionics projébe software
project consists of 200,000 lines of preprocessamde, performs many floating-point computationd aantains
digital filters. The analysis duration for the eatprogram is approximately 6 hours on a 2.6 GHaW8 16 GB
RAM. At the beginning, the number of false alarneswi67 and could be reduced to zero in the end.

Conclusion

The quality assurance process for safety-criticabedded software is of crucial importance. The éossystem
validation grows with increasing criticality leved constitute a large fraction of the overall deypshent cost. The
problem is twofold: system safety must be ensuretithis must be accomplishable with reasonablarteff
Contemporary safety standards require to identitemptial functional and non-functional hazards ated
demonstrate that the software does not violatadlevant safety goals. Tools based on abstraatpirgtion can
perform static program analysis of embedded apjics. Their results are determined without thednechange
the code and hold for all program runs with arbjtiaputs. Especially for non-functional progranoperties they
are highly attractive, since they provide full datad control coverage and can be seamlessly inezgia the
development process.

We have presented three exemplary tools in thisler@aiT allows to inspect the timing behavior(tGfme-critical
parts of) program tasks. It takes into accountcitrabination of all the different hardware charastas while still
obtaining tight upper bounds for the WCET of a giywrogram in reasonable time. StackAnalyzer cateslaafe
upper bounds on the maximum stack usage of tasitséé\can be used to prove the absence of runtimes én C
programs. It can be specialized to the softwareeurahalysis and achieves very high precision. lmihlis



synchronous real-time software from the avionicustry could be successfully analyzed by Astréé wéro false
alarms.

aiT, StackAnalyzer and Astrée can be used as asabysls for the certification according to safstandards like
DO-178B or ISO 26262. They are used by many inguststomers from avionics and automotive industaied
have been proved in industrial practice. The tagdlification process can be automatized to a langend by
dedicated Qualification Support Kits.
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