
Towards Model-Driven Development of Hard
Real-Time Systems

Integrating ASCET and aiT/StackAnalyzer

Christian Ferdinand1, Reinhold Heckmann1, Hans-Jörg Wolff2, Christian
Renz2, Oleg Parshin3, and Reinhard Wilhelm3

1 AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbrücken, Germany
info@absint.com, http://www.absint.com

2 ETAS GmbH, Borsigstraße 14, D-70469 Stuttgart, Germany
Christian.Renz@etas.de, http://www.etasgroup.com

3 Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany
wilhelm@cs.uni-sb.de, http://rw4.cs.uni-sb.de

Abstract Software developers in the automotive sector must achieve
high quality objectives. Many design and implementation errors are
avoided by synthesizing code from model-based software specifications
using automatic code generators such as ETAS’ ASCET. To ver-
ify non-functional properties of the implementation, model-based de-
sign processes should be complemented with static program analysis
tools like AbsInt’s StackAnalyzer and timing analyzer aiT. AS-
CET, StackAnalyzer and aiT can be integrated in a way that the
aiT/StackAnalyzer analysis results for code generated by ASCET
are conveniently accessible from within the ASCET development envi-
ronment. This gives ASCET users a direct feedback on the effects of
their design decisions on resource usage, allowing them to select more
efficient designs and implementation methods. In the paper, we present
the tools, the experimental integration, preliminary results and plans for
further tool integration.

1 Introduction

Software developers in the automotive sector face some specific challenges: Many
software systems are safety-critical and, thus, must achieve high quality objec-
tives. On the other hand, competitive markets require software and hardware
that can be mass-produced using a minimum of resources. Additionally, today’s
cars feature complete networks of Electronic Control Units (ECUs), which re-
quire highly collaborative software development. Therefore, even from the start,
safety and budget considerations influence the design and specification of auto-
motive software systems.

Often these challenges induce conflicting goals concerning reduction of com-
ponent costs, of development costs, and of development complexity. One example
would be reduction of component costs by using cheaper ECUs without floating



point units, where all calculations need to be performed using integers. However,
due to the additional scaling and converting needed due to the representation
of floating point numbers by integers, this can become an additional source of
defects during the actual implementation of the system, leading to an increase
in development costs and complexity.

There are different approaches to deal with the development problems in
the automotive context. Standards like MISRA-C [1] attempt to minimize the
amount of errors introduced by manual coding. Following such guidelines, how-
ever, may increase the time needed for coding and incur a cost in higher resource
usage.

Model-based design tries to satisfy the high safety requirements in combi-
nation with good development productivity by starting with a software specifi-
cation. The implementation process is not necessarily automatic. It is therefore
still possible to introduce software defects through misinterpretation of design
and specification documents or through human error during the manual coding
process. Automatic code generators such as the one provided by ASCET are
increasingly used to generate the implementation from the specification. By cre-
ating C code directly from the model-based specification, these code generators
avoid the typical translation problems that occur in the implementation stage.

Many design and implementation errors are avoided by synthesizing code
from specifications. However, non-functional properties such as absence of mem-
ory overflow and timer overruns are still an issue. To verify such properties of
the implementation, unit tests and runtime measurements are currently used in
the industry. Assuming sufficient test coverage of the system, some information
about the typical runtimes of the software processes can be obtained. However,
to acquire a higher level of confidence and to aid the development process, it
is necessary to gather reliable and precise information about the code. Recent
advances in the area of static program analysis based on abstract interpretation
led to the development of tools to automatically detect upper bounds on resource
usage like worst-case execution times (WCET) and worst-case stack usage, and
of tools to prove the absence of runtime errors like null pointer dereferencing
and out-of-bounds array accesses.

When using automatic code generation, tools checking for runtime errors are
of minor importance – the code generator is expected to produce correct code
given its knowledge about the model. Tools to determine safe and precise bounds
on resource usage, however, can be very helpful for the users of modeling and
automatic code generation tools. Tools of this kind include AbsInt’s Stack-
Analyzer and timing analyzer aiT. Other timing tools, including academic
prototypes, are described and discussed in [2].

In the context of safety-critical hard real-time applications, the standard use
of tools like aiT and StackAnalyzer is to demonstrate and prove that pieces of
code are guaranteed to always execute within limited time intervals and resource
bounds.

In our work, we propose to complement model-based design processes with
static program analysis tools. This guarantees the satisfaction of safety require-



ments, and it helps to speed up the project by aiding in the establishment of
general guidelines, the configuration of the build environment used as well as
the coordination of distributed development and the development itself. We ar-
gue that to develop hard real-time systems, model-driven development coupled
with detailed analysis of the implemented software is much better suited than
traditional development methods that rely on programming C code.

The users of ASCET usually work on a much more abstract level than the
producers of manual code. ASCET, StackAnalyzer and aiT can be integrated
in a way that the aiT/StackAnalyzer analysis results for code generated by
ASCET are conveniently accessible from within the ASCET development en-
vironment. This gives ASCET users a direct feedback on the effects of their
design decisions on the resource usage, allowing them to select more efficient
designs and implementation methods.

In the following, we present the tools, the experimental integration, prelimi-
nary results and plans for further tool integration.

2 Model-Based Design and Automatic Code Generation

In the automotive industry, model-based design has rapidly become a standard
technology for system development. Complex automotive functions are usually
based on abstract function models that make use of domain-specific knowledge.
In this context, model-based CASE tools can offer significant development ben-
efits as they allow for an easier transfer of domain-specific knowledge into a
software engineering context. A comprehensive study of different model-based
CASE tools can be found in [3].

2.1 Model-Based Development for Real-Time Applications

Software development using C offers many degrees of freedom that make it more
difficult to verify the fulfillment of safety and real-time requirements. It is there-
fore necessary to provide a more abstract and more clearly defined specification
of the system to be developed.

To solve this problem, ETAS’ ASCET offers graphical specification editors
to model control and data flow and state machines for state-based algorithms,
as well as textual specification using ESDL, a programming language with a
syntax based on Java that operates on the model level. Working with these
specifications allows the developers to abstract away from the concrete variables
on the target and deal with (physical) model variables instead, each with a well-
defined representation in terms of concrete variables. These specifications can
then be used to generate C code both for rapid-prototyping as well as ECU tar-
gets. The code generator will take care of the translation of model variables to
program variables (according to the chosen representation of model variables)
and of implementing operations on the model variables in a way that is con-
sistent with their concrete representation, thereby eliminating a lot of possible



oversights on the side of the developer. The code generators intended for pro-
ducing C code used in series production were the first world-wide to be certified
according to IEC 61508, the international standard for “functional safety of elec-
trical/electronic/programmable electronic safety-related systems”.

The improvements offered by this approach are demonstrated in [4]. To verify
the correctness of their active steering model, BMW developed a formal verifi-
cation tool that operates on components developed using ASCET.

To reduce the effort needed for verification, ASCET strongly supports mod-
ular development through so-called classes, encapsulated modules closely related
to object-oriented programming concepts (while avoiding dynamic memory allo-
cation and inheritance). Components can be reused by using multiple data sets
and implementations depending on the project context. ASCET offers strong
separation of algorithm, data and implementation details (memory classes, types,
etc.), thus facilitating the software engineering process and the verification and
testing process.

These improvements are especially useful in the context of fixed-point integer
calculations on low-cost platforms, where manual coding typically introduces
many bugs that can be avoided using code generation. To verify the model
during different stages of development, ASCET offers several code generators
to aid the developer in a step-by-step transition from model to production code.
This allows verification of the code against the model on the PC using PC
simulation of the generated code, and on real time-capable rapid-prototyping
hardware similar to the target platform, but with additional resources. Finally
the code can also be run on the target platform, either as a complete model or
(using bypassing) as newly developed functions integrated into already released
versions of the software.

2.2 Model-Based Development in the Context of Large Applications

To be usable for large-scale automotive applications, model-based tools need to
integrate themselves tightly into existing toolchains. Amongst different tools,
ANSI C code has established itself as a quasi standard for embedded develop-
ment. Since ASCET allows for the integration both of models developed using
Matlab/Simulink as well as legacy C code, we focused our analysis on compiled
binaries as well as annotated C code.

3 Code Performance in Real-Time Systems

3.1 Stack Usage

Stack overflow is a possible cause of catastrophic failure that usually leads to
run-time errors that are difficult to diagnose. The problems stem from the fact
that the user needs to specify the amount of memory that should be reserved for
the stack. Underestimating the maximum stack usage leads to stack overflow and
thus system failure, overestimating means wasting valuable memory resources.



One approach to solve this problem is to measure the maximum stack usage
using a debugger. However, even when running the program several times using
a test suite, it is not guaranteed that the maximum stack usage is ever observed.

AbsInt’s StackAnalyzer is able to provide a general worst-case estimate.
By performing a value analysis on the stack pointer, the tool can figure out
how the stack increases and decreases along all possible control-flow paths. This
information can be used to derive the maximum stack usage of a task.

Figure 1. Call graph with stack analysis results

The results of StackAnalyzer are presented as annotations in a combined
call graph and control-flow graph. Figure 1 shows the call graph of a small
application, with stack analysis results at routines and for the entire application
(at the top). On this level, the results of stack analysis are displayed in boxes
located to the right of the boxes representing the routines of the application.
Each result box carries two results: a global result, coming first, and a local
result, following in angular brackets. Each result is an interval of possible stack
levels.

The local result at a routine R indicates the stack usage in R considered
on its own: It is an interval showing the possible range of stack levels within
the routine, assuming value 0 at routine entry. The local result for a routine is
derived from the results at individual instructions, which are shown in Figure 2
for one of the routines of this example.

The global result for routine R indicates the stack usage of R in the context
of the entire application. It is an interval providing bounds for the stack level
while the processor is executing instructions of R, for all call paths from the
entry point to R. Thus, the global result at routine R does not include the stack
usage of the routines called by R.

The predicted worst-case stack usages of individual tasks in a system can be
used in an automated overall stack usage analysis for all tasks running on an Elec-
tronic Control Unit, as described in [5] for systems managed by an OSEK/VDX
real-time operating system.



Figure 2. Individual instructions with stack analysis results

3.2 Worst-Case Execution Time

Many tasks in safety-critical embedded systems have hard real-time character-
istics. Failure to meet deadlines may be as harmful as producing wrong output
or failure to work at all. Yet the determination of the worst-case execution time
(WCET) of a task is a difficult problem because of the characteristics of modern
software and hardware [6]. Underestimating the execution time leads to systems
that are prone to errors because of timing failures, whereas overestimating might
lead to the wrong conclusion that the system designed will not be able to run
on the selected hardware or that so much capacity is already used that no new
functionality can be added.

Embedded control software (e.g., in the automotive industries) tends to be
large and complex. The software in a single electronic control unit typically has to
provide different kinds of functionality. It is usually developed by several people,
several groups or even several different providers. It is typically combined with
third-party software such as real-time operating systems and/or communication
libraries.



Caches and branch target buffers are used in virtually all performance-
oriented processors to reduce the number of accesses to slow memory. Pipelines
enable acceleration by overlapping the executions of different instructions. Con-
sequently the timing of the instructions depends on the execution history.

The widely used classical methods of predicting execution times are not
generally applicable. Software monitoring and dual-loop benchmark modify the
code, which in turn changes the cache behavior. Hardware simulation, emulation,
or direct measurement with logic analyzers can only determine the execution
time for some fixed inputs. They cannot be used to infer the execution times for
all possible inputs in general.

In contrast to that, abstract interpretation can be used to efficiently compute
a safe approximation for all possible cache and pipeline states that can occur at a
program point in any program run with any input. These results can be combined
with ILP (Integer Linear Programming) techniques to predict a safe upper bound
of the worst-case execution time (WCET bound) and a corresponding worst-case
execution path.

AbsInt’s WCET tool aiT determines the WCET of a program task in several
phases [7] (see Figure 3).

Figure 3. Phases of WCET computation

The starting point of AbsInt’s analysis framework is a binary program and
additional information about numbers of loop iterations, upper bounds for re-



cursion, etc. This information may appear in a separate parameter file called AIS
file, or as special comments in the C source that can be generated by ASCET.

In the first step a decoder reads the executable and reconstructs the con-
trol flow [8]. This requires some knowledge about the underlying hardware, e.g.,
which instructions represent branches or calls. The reconstructed control flow is
annotated with the information needed by subsequent analyses and then trans-
lated into CRL (Control-Flow Representation Language) – a human-readable
intermediate format designed to simplify analysis and optimization at the ex-
ecutable/assembly level. This annotated control-flow graph serves as the input
for micro-architecture analysis.

Then, value analysis tries to determine the values in the processor registers
for every program point and execution context. Its results are used in loop bound
analysis and in cache analysis (possible addresses of indirect memory accesses).
Value analysis can also determine that certain conditions always evaluate to
true or always evaluate to false. As consequence, certain paths controlled by
such conditions are never executed. Therefore, their execution time does not
contribute to the overall WCET of the program, and need not be determined in
the first place.

WCET analysis requires that upper bounds for the iteration numbers of all
loops be known. aiT tries to determine the number of loop iterations by loop
bound analysis, but succeeds in doing so for simple loops only. Bounds for the
iteration numbers of the remaining loops must be provided as specifications in
the AIS file or annotations in the C source.

Cache analysis classifies the accesses to main memory. The analysis in aiT
is based upon [9], which handles analysis of caches with LRU (Least Recently
Used) replacement strategy. However, it had to be modified to reflect the non-
LRU replacement strategies of common microprocessors: the pseudo-round-robin
replacement policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU)
strategy of the PowerPC MPC 750 and 755. The modified algorithms distinguish
between sure cache hits and unclassified accesses. The deviation from perfect
LRU is the reason for the reduced predictability of the cache contents in case of
ColdFire 5307 and PowerPC 750/755 compared to processors with perfect LRU
caches [10,11], leading to higher estimates of the WCET.

Pipeline analysis models the pipeline behavior to determine execution time
bounds for sequential flows (basic blocks) of instructions as done in [12]. It takes
into account the current pipeline state(s), in particular resource occupancies,
contents of prefetch queues, grouping of instructions, and classification of mem-
ory references by cache analysis. The result is an execution time bound for each
basic block in each distinguished execution context.

Using the results of the micro-architecture analyses, path analysis determines
a safe upper bound of the WCET. The program’s control flow is modeled by an
integer linear program [13,14] so that the solution to the objective function is
the predicted worst-case execution time bound for the input program. A special
mapping of variable names to basic blocks in the integer linear program enables
execution and traversal counts for every basic block and edge to be computed.



aiT’s results are written into a report file from which they may be extracted
by the ASCET system. In addition, aiT produces a graphical description that
can be visualized by the aiSee tool [15] to view detailed information delivered
by the analysis.

Figure 4. Call graph with WCET bounds

Figure 4 shows the graphical representation of the call graph for a small
example. The calls (edges) that contribute to the worst-case runtime are marked
by the color red. The computed WCET bound is given in CPU cycles and in
microseconds provided that the cycle time of the processor has been specified.

Figure 5 shows the basic block graph of a loop. The number sum # describes
the number of traversals of an edge in the worst case, while max t describes
the execution time bound determined by aiT for the basic block from which the
edge originates (taking into account that the basic block is left via the edge). The
worst-case path, the traversal numbers and timings are determined automatically
by aiT. Upon special command, aiT provides information on the origin of these
timings by displaying the cache and pipeline states that may occur within a
basic block.

4 Integration into the Software Development Process

When developing software with ASCET, reusable components are typically
combined into a project. Through this project, the various operating system
tasks can be configured and code generation and build can be started. There-
fore, the project is the main center of the generate/compile/link-workflow. To
integrate the analysis tools into this workflow, a graphical tool has been de-
veloped that takes the code and binaries created by ASCET, calls aiT and
StackAnalyzer and displays the results in a window of its own (see Figure 6).
This tool can be called directly from the project window. It fetches the informa-
tion needed about the project via ASCET’s extensible tool API.

In addition to the information calculated by aiT and StackAnalyzer, our
tool also analyzes the generated map file to calculate the total memory usage.



Figure 5. Basic block graph in a loop, with timing information

This tool serves as a one-stop information center that can be used to quickly
review the effects of changes made to the project.

The ASCET software development framework is specifically suited for the
development of real-time systems. The configuration of the operating system
necessary for embedded development is directly built into ASCET projects.
Processes and messages allow interfacing with real-time operating systems based
on the OSEK standard. We therefore decided to base our integration on the
pre-existing structure of operating system tasks and processes (called by the
tasks). This way, the user can quickly check whether the actual worst-case task
runtimes clash with the task scheduling periods chosen. It is planned to improve
the integration by communicating the calculated WCET information back into
ASCET to correct or improve the operating system configuration.

4.1 Improving Function Development

For the developer, the immediate and detailed feedback provided helps to find
the critical areas of the project where most of the resources are spent. It also
can help to decide between different alternatives to solve a given problem. Using
model-based design, different modeling techniques can lead to strongly varying
code. Here, the information provided by aiT and StackAnalyzer can help to
prototype and develop software more rapidly.

An application of this is given in [16]. For his thesis, Abhik Dey has used our
integration of aiT into ASCET to identify the components of a lambda probe
model that need to be optimized for code size and performance. He was able to



Figure 6. Window with analysis results

measure the impact of different modelling techniques as well as compiler settings
precisely and managed to reduce the WCET of his complex lambda probe task
down by 87% and the code size by 54%.

4.2 Improving the Complete Process

Through our tool, the project manager receives the information necessary to
make choices for the project regarding modelling guidelines, code generation
settings, compiler tools and compiler settings. By analyzing a set of represen-
tative projects, the complete tool chain can be optimized. As aiT also takes
into account the exact hardware configuration and memory layout, various al-
ternative platforms and configurations can easily be tested to achieve optimal
resource usage.

Static analysis tools are also a valuable addition for managers coordinating
the development of several pieces of software that will need to work together or
even will be distributed on the same ECUs. By establishing memory and runtime
quotas for individual parts of the software and checking and enforcing them using
ASCET, aiT and StackAnalyzer, it is possible to prevent divergence of the
efforts of several teams working on the same project.

4.3 Additional Improvements over Manual Coding

For the calculated WCET and stack usage to be useful, they need to be as close
to the realistic model values as possible. Therefore, it is important to improve
the precision of the calculation.

Instead of just relying on the C source code, we can make use of the addi-
tional information provided by the model, which is usually much more rigidly
defined than the resulting C code. One example would be the implementation
of physical values as integer values in the program: A temperature ranging from



-20.0 to +50.0 in the model might be implemented as a 16 bit integer value in
the C code, with appropriate conversions. Such implementations are used even
when developing using C. In this case, the developer has to take care that con-
versions take place in all cases where the value is used. When using model-based
development coupled with a code generator, all conversions are taken care of
by the code generator automatically. After specifying the range and number of
digits, the developer can work with a physical view of the variable.

In this example, the implementation of the physical value does not make use
of the full range of the 16 bit integer. Depending on the way that the conversions
are performed, this might or might not be obvious to the static analysis tool (and
to a less careful human reader of the source code). Model-based development
tools are able to supply exact information on the value range used, therefore
allowing for higher precision of the analysis results. Further information to be
supplied could be the maximum iteration number of loops, possible values of
pointers, etc. Normally, aiT tries to find such information by static analysis,
but relies on user annotations in cases where static analysis does not succeed.

Conversely, the results of aiT and StackAnalyzer are meant to be used
to improve the C code used in the project. A developer working on C code
discovering a certain coding pattern to be inefficient has to change every instance
of this pattern as well as monitor future changes for instances of the pattern.
Using model-based development, this information can be used to improve the
implementation of the code generator. To update the C code, it is enough to
regenerate it using the new version of the code generator. In addition to this
manual improvement process, there are a few instances where it could be possible
to use the information gained by static analysis to automatically configure the
code generator. One example would be in- and outlining of state machines. Here,
there are few rules to choose the implementation with the best performance
that apply for all state machines. Instead, the developer could generate different
variants of the state machine and choose the parameter setting that results in
the code performing best.

We were able to use additional information supplied by the code generator
in the context of interpolation routines for characteristic tables. Here, a special
loop construct is used in the C code where the loop iteration count depends on
the size of the data structures involved. This special loop construct could not be
resolved by static analysis, rendering the calculation of loop bounds impossible.
By providing annotations on the nature of the loop bounds, we were able to
calculate the WCET for the table accesses.

4.4 Experiments

The software used in the experiments was an engine throttle control module
specified in ASCET and compiled with Tasking compiler v7.5. The compiled
code was run on an STM ST10F269 microcontroller board. Run-times were
extracted from bus traces made with the ISYSTEMS ILA 128 logic analyzer.



In general, finding a worst-case input for each procedure can be very chal-
lenging. In our experiments, we used worst-case path information provided by
aiT to manually construct a corresponding input.

In order to allow a fully automatic analysis, some adaptations were necessary
that are described in the following.

Volatile Variables. Some data structures in the generated code were statically
initialized with the volatile qualifier. aiT uses the values from the initialized
data segment of the executable for value analysis, in particular to find infeasible
paths and to determine loop bounds. Since aiT works on the binary level on
which no information about volatile variables is preserved, it requires that all
volatile variables be declared as volatile by means of annotations. Without these
annotations, the initializations for variables produced by ASCET do not lead
to the worst-case path.

For example, in the following (simplified) code the variables active and
noOfTransfers were both initialized to zero. Without annotations, aiT would
consider the true branch of the if statement as infeasible and derive a loop
iteration count of zero.

if (active) {
...
dst_ptr = ...;
adr_ptr = ...;
end_dst_ptr = dst_ptr + noOfTransfers;
while (dst_ptr < end_dst_ptr) {

*dst_ptr++ = *adr_ptr++;
}

}

Currently, volatile annotations must be written manually. For the future,
ASCET is expected to pass information about volatiles to aiT automatically.

Synchronization. In the following example the boolean variable condition
is set externally by another process.

while (_condition) {
...

}

In such a case, an upper bound for the number of loop iterations cannot be
determined statically.

This code is used to synchronize processes. Here we use an annotation spec-
ifying that this condition is never true. The cost for the synchronization should
be taken into account by a system-wide schedulability analysis.



Interpolation Functions. The generated code contains lots of interpolation
routines using iterative search algorithms like binary search or linear search. The
loop bounds for these algorithms usually depend on some parameters, e.g., the
size of the problem in case of binary search. Therefore, aiT has been extended
by parametric loop bounds featuring an expression instead of a fixed number,
for instance

loop here max ceil (log2 (R4/2));

In this case, value analysis tries to determine the contents of register R4 at
the place of the annotation, and if successful evaluates the expression to obtain
a concrete loop bound. Parametric loop bounds can thus be used to specify
automatic loop bounds for ASCET interpolation routines without effort for
ASCET users.

4.5 Discussion of the Results

Table 1 shows the results of practical experiments for aiT. The measured and an-
alyzed times are given in processor cycles. Overall, the predicted WCET bounds
are very precise.

Procedure name Measured aiT Overestimation

ANALOGIN16 IMPL AdInterrupt 291 291 0.0%
ANALOGIN16 IMPL AnalogIn16 6 6 0.0%
CONVERTER IMPL convert 26 26 0.0%
DISTAB12 IMPL measurement a 263 283 7.6%
DISTAB12 IMPL measurement b 263 283 7.6%
DISTAB12 IMPL measurement c 263 283 7.6%
PIDT1 MODULE IMPL normal 2980 3138 5.3%
PIDT1 MODULE IMPL out 133 133 0.0%
PWMOUT7 2 IMPL PwmOut7 2 109 110 0.9%
PWMOUT7 7 IMPL PwmOut7 7 116 117 0.9%

Table 1. Comparison of maximal measured run-times and WCETs predicted by aiT
(in cycles)

Table 2 compares the results of stack usage analysis with results obtained
from simulator runs, showing that the analysis results are precise. All stack sizes
are given in bytes. The user stack usage is 0 in most routines since the generated
code rarely contains local variables that would be stored on the stack. The system
stack usage is 0 in those routines that do not call other routines and therefore
never push a return address on the stack.



Procedure name Simulated StackAnalyzer Overestimation

ANALOGIN16 IMPL AdInterrupt 0/0 0/0 0.0%
ANALOGIN16 IMPL AnalogIn16 0/0 0/0 0.0%
CONVERTER IMPL convert 0/0 0/0 0.0%
DISTAB12 IMPL measurement a 0/0 0/0 0.0%
DISTAB12 IMPL measurement b 0/0 0/0 0.0%
DISTAB12 IMPL measurement c 0/0 0/0 0.0%
PIDT1 MODULE IMPL normal 16/32 16/32 0.0%
PIDT1 MODULE IMPL out 4/0 4/0 0.0%
PWMOUT7 2 IMPL PwmOut7 2 0/0 0/0 0.0%
PWMOUT7 7 IMPL PwmOut7 7 0/0 0/0 0.0%

Table 2. Comparison of maximal simulated system/user stack usage and usage as
predicted by StackAnalyzer (in bytes)

5 Conclusion

Tools based on abstract interpretation can perform static program analysis of
embedded applications. Their results hold for all program runs with arbitrary
inputs. Employing static analyzers is thus orthogonal to classical testing, which
yields very precise results, but only for selected program runs with specific in-
puts. The usage of static analyzers enables one to develop complex systems on
state-of-the-art hardware, increases safety, and saves development time. Precise
stack usage and timing predictions enable the most cost-efficient hardware to
be chosen. As recent trends in the automotive industry (e.g., X-by-wire, time-
triggered protocols) require knowledge of the WCETs of tasks, a tool like aiT
is of high importance.

Combined with model-based design and automatic code generation, the po-
tential of static analysis tools is increased greatly: More strict specification and
development guidelines enforced by tools like ASCET allow for a high precision
of the analyzers’ estimates as demonstrated by our experiments. The resulting
combination allows for the development of more secure and better-performing
systems while decreasing time-to-market through enhancing development pro-
ductivity.

Since memory class information is only finalized in the linking stage, aiT
and StackAnalyzer currently operate on completely linked binaries. This is not
always convenient for the user. Many companies rely on a complicated toolchain
to create binaries for the embedded platforms. It would be a huge overhead to
use this toolchain just to analyze the performance of a single component. We
currently research different ways of analyzing single compiled object files, either
through direct analysis of the object file or through linking just the object file,
ignoring or providing undefined symbols. In both cases, the calculated WCET
bounds will be higher (and therefore less exact) due to the information missing
from the linking stage. But even those less exact results might help users to
improve the performance of their component.



We plan to further improve on the solution that we have developed so far by
integrating static analysis tools like aiT and StackAnalyzer even more tightly
into ASCET’s development environment. By allowing developers to analyze
smaller parts of a model without integrating them into a project, we would be
able to decrease turn-around-times for function development even more. We also
hope to use the results obtained by aiT for semi-automatic OS configuration of
the whole project.

Acknowledgments

The collaboration between AbsInt GmbH and Universität des Saarlandes was
supported by the Network of Excellence on Embedded Systems Design ARTIST2.
Collaboration between AbsInt GmbH and ETAS GmbH has been partially sup-
ported by the FP6 STREP project INTEREST (INTEgrating euRopean Em-
bedded Systems Tools).

References

1. The Motor Industry Software Reliability Association: Guidelines for the Use of
the C Language in Critical Systems. (2004) ISBN 0-9524156-2-3.

2. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution time prob-
lem - overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems 5 (2007) 1–47

3. Schätz, B., Hain, T., Prenninger, W., Rappl, M., Romberg, J., Slotosch, O.,
Strecker, M., Wisspeintner, A., et al.: CASE tools for embedded systems. Technical
Report TUMI-0309, Fakultät für Informatik, TU München (2003)

4. Damm, W., Schulte, C., Wittke, H., Segelken, M., Higgen, U., Eckrich, M.: Formale
Verifikation von ASCET Modellen im Rahmen der Entwicklung der Aktivlenkung.
In: INFORMATIK 2003 – Innovative Informatikanwendungen. Volume 34 of Lec-
ture Notes in Informatics. (2003) 340–344

5. Janz, W.: Das OSEK Echtzeitbetriebssystem, Stackverwaltung und statische
Stackbedarfsanalyse. In: Embedded World, Nuremberg, Germany (2003)

6. Wilhelm, R.: Determining bounds on execution times. In Zurawski, R., ed.: Hand-
book on Embedded Systems. CRC Press (2005) 14–1 – 14–23

7. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-
life processor. In: Proceedings of EMSOFT 2001, First Workshop on Embedded
Software. Volume 2211 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 469–485

8. Theiling, H.: Extracting Safe and Precise Control Flow from Binaries. In: Proceed-
ings of the 7th Conference on Real-Time Computing Systems and Applications,
Cheju Island, South Korea (2000)

9. Ferdinand, C.: Cache Behavior Prediction for Real-Time Systems. PhD thesis,
Saarland University (1997)



10. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of
the IEEE 91(7) (2003) 1038–1054 Special Issue on Real-Time Systems.

11. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Predictability of cache replacement
policies. Reports of SFB/TR 14 AVACS 9, SFB/TR 14 AVACS (2006) ISSN:
1860-9821, http://www.avacs.org.

12. Schneider, J., Ferdinand, C.: Pipeline Behavior Prediction for Superscalar Proces-
sors by Abstract Interpretation. In: Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems. Volume 34. (1999)
35–44

13. Theiling, H., Ferdinand, C.: Combining abstract interpretation and ILP for mi-
croarchitecture modelling and program path analysis. In: Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid, Spain (1998) 144–153

14. Theiling, H.: ILP-based interprocedural path analysis. In Sangiovanni-Vincentelli,
A.L., Sifakis, J., eds.: Proceedings of EMSOFT 2002, Second International Confer-
ence on Embedded Software. Volume 2491 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 349–363

15. AbsInt Angewandte Informatik GmbH: aiSee Home Page. http://www.aisee.com.
(2006)

16. Dey, A.: Implementation of control algorithms in production code projects, using
case tools with automated code generation. Master’s thesis, FHT Esslingen (2006)


