
Demo Abstract:
Tooling Support for Benchmarking Timing Analysis

Christian Eichler, Peter Wägemann, Tobias Distler, and Wolfgang Schröder-Preikschat
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

To appear in: Proceedings of the 23rd Real-Time Embedded Technology and Applications Symposium, Demo Session (RTAS Demo ’17)
Pittsburgh, USA, 18–21 April 2017

Abstract—Precisely evaluating the accuracy of worst-case
execution time (WCET) analysis tools through benchmarking is
inherently difficult and in general involves a significant amount of
manual intervention. In this paper, we address this problem with
ALADDIN, a tooling framework that enables fully-automated eval-
uations of WCET analyzers. To provide comprehensive results
based on benchmarks with known WCETs, ALADDIN incorpo-
rates the GENE benchmark generator. Our demonstration shows
how ALADDIN evaluates two state-of-the-art WCET analyzers:
the commercial tool aiT and the open-source tool PLATIN.

I. PROBLEM STATEMENT

Ensuring timeliness is an important factor in real-time sys-
tems and requires knowledge about the worst-case execution
time (WCET) of programs. The naive approach to obtain such
information is to determine the maximum of the individual
execution times associated with all possible program inputs,
which is usually not feasible due to the wide range of input
values. For example, for an input of n bits, the program had to
be executed 2n times. Existing WCET tools reduce the time
required for analysis by deriving the WCET of a program
from its structure. However, due to the fact that in most cases
an enumeration of all possible program paths is infeasible,
WCET tools resort to less extensive analyses at the cost of
reduced accuracy. As a result, the values reported by analyzers
in general represent overestimations of the actual WCET.

In this paper and the associated demo, we address two major
problems that arise when evaluating the accuracy of WCET
tools: the lack of baselines and the absence of automation.

Problem 1: Missing Baselines. The common practice to
estimate the accuracy of WCET analyzers is to evaluate them
with WCET benchmark suites. Unfortunately, existing suites
have the drawback that they neither state the actual WCETs
of benchmarks nor provide a practical way to determine
them [1]. As a result, there are no baselines that would allow
a comprehensive evaluation of the accuracy of WCET tools.

Problem 2: Absence of Automation. For a proper assessment
of the improvements made in the field of timing analysis, the
evaluation of WCET analyzers needs to be repeated period-
ically [2]. However, most evaluations required a significant
amount of labor-intensive intervention, reducing the frequency
with which evaluations can be conducted. Thus, automation of
both the execution of analysis tools and the evaluation of their
results is a key factor to enable frequent reevaluations.

Acknowledgments: This work is supported by the German Research Founda-
tion (DFG), in part by Research Grant no. SCHR 603/9-2, no. SCHR 603/13-1,
and the SFB/Transregio 89 “Invasive Computing” (Project C1).

II. THE GENE BENCHMARK GENERATOR

To solve the challenge of missing baselines, we devel-
oped the GENE benchmark generator that is able to create
benchmarks with known WCETs [1]. To achieve this, GENE
relies on small program building blocks that yield a well-
known behavior. During the benchmark generation process,
GENE composes these blocks in a way such that the execution
of the longest path through the benchmark is triggered by
a predefined input value. That is, in contrast to common
WCET benchmark suites, GENE’s benchmarks come with the
information required to determine their actual WCET: the
worst-case input value. As a result of this approach, GENE
is able to provide an accurate baseline for further evaluations
of WCET analysis tools. The time required for executing the
longest path through the benchmark is measured by execution
on the actual target hardware using the worst-case input value.
The actual measurement is conducted by the ALADDIN tooling
framework that is presented in the following section.

III. THE ALADDIN TOOLING FRAMEWORK

To eliminate the need for manual intervention when bench-
marking timing analysis, the ALADDIN tooling framework
automates the entire process of generating benchmarks, exe-
cuting them on the target hardware, running WCET analyzers,
and performing the actual evaluation of the values gathered
in this process. For this purpose, ALADDIN incorporates
reusable connectors to several components required to conduct
a thorough and comprehensive evaluation of both the gener-
ated benchmarks as well as the integrated WCET analyzers,
currently aiT [3] and PLATIN [4]. Even though the ALADDIN
tooling framework already comes with various features, it
is designed to remain flexible and thus can be extended by
additional WCET analyzers or different hardware platforms.

Figure 1 illustrates the components used for the evaluation
of aiT and PLATIN. The evaluation of a WCET analyzer using
ALADDIN is subdivided into two different phases: During
the analysis/measurement phase (illustrated in the left part of
Figure 1), ALADDIN conducts all actions required to obtain
raw data, such as execution-time measurements on the target
hardware or upper bounds from WCET-analysis tools. The
raw data generated within this phase is stored to disk for
subsequent evaluations. During the evaluation phase (illus-
trated in the right part of Figure 1), ALADDIN reads the data
of one or more benchmarks and conducts evaluations based
on these datasets, such as calculating the average level of
overestimation for a particular WCET analyzer.978-1-5090-5269-1/17/$31.00 c©2017 IEEE

analysis/measurement phase ← → evaluation phase

Metrics

PLATIN

aiT

Red Pitaya
oscilloscope

CPU timer

Analysis/Measurement

GENE
benchmark
generator

Cycles

O
cc
ur
re
nc
es WCET

platinaiT

Cycles

O
cc
ur
re
nc
es WCET

platinaiT

Cycles

O
cc
ur
re
nc
es WCET

platinaiT

Evaluation

upper bound(ait)/WCET[%]

Oc
cu

rre
nc

es

1000 samples, 10 underestimations

overestimation factors:
aiT: 1.23x

PLATIN: 1.96x

Evaluation SummarizationALADDIN

Figure 1: Application scenario of the GENE benchmark generator and the supporting ALADDIN framework

The analysis/measurement phase of ALADDIN operates on
a benchmark and its worst-case input value, which are both
provided by GENE. Using this input, ALADDIN determines the
benchmark’s actual WCET for a particular target architecture
by deploying the program on the target hardware and measur-
ing the execution time of the worst-case path. To offer further
insight into the benchmark’s timing behavior, ALADDIN also
carries out additional measurement-based analyses by tracing
the program with a large number of different input values.

ALADDIN relies on two approaches to measure execution
times of program code: By default, ALADDIN uses internal
CPU timers. Furthermore, ALADDIN integrates external mea-
surement devices (i.e., oscilloscopes, logic analyzers) in order
to cross-check the results provided by the internal CPU timers.

In addition to the time measurements and static analyses
with aiT and PLATIN, ALADDIN applies several code metrics
for WCET analysis [5] on the generated benchmark. These
measures allow a classification of the analyzed benchmark and
its complexity for WCET analysis.

In the evaluation phase, ALADDIN processes the data
obtained in the analysis/measurement phase. This includes
a) the presentation of both trace-based measurements and
static analyses in a single plot and b) the summarization
results derived from the evaluations of several benchmarks
by different approaches. This information enables users to
identify the individual strengths and weaknesses of WCET
analyzers, including, for example, their level of overestimation
compared to the actual WCET on a specific hardware platform.

1

3

2

Figure 2: Demonstration setup for evaluation of WCET analyzers:
(1) laptop (2) oscilloscope (3) rack (10x ARM Cortex-M4)

IV. DEMONSTRATION

In our demonstration, we present ALADDIN’s abilities to
determine the accuracies of two state-of-the-art WCET ana-
lyzers aiT and PLATIN (see Figure 1). This evaluation includes
execution-time measurements (with CPU timers and an oscil-
loscope), automated WCET analyses, and the application of
several code metrics. Finally, we compare and visualize the
results to determine the accuracy of WCET tools.

Figure 2 shows the hardware setup required for this ap-
plication scenario: The setup consists of 10 ARM Cortex-
M4 boards (Infineon XMC4500), stacked in a wooden rack.
All boards are connected to a laptop via USB. In addition,
a remote-controllable oscilloscope (Red Pitaya) is integrated
into our setup for external time measurements.

In the first step of the demo, we illustrate the step-by-step
benchmark-generation process with GENE in an interactive
way. ALADDIN determines the actual WCET on the target
platform and executes the benchmark with different inputs.
To speed up the measurements, they are distributed across all
connected boards. The process of measured execution times
and their occurrences is successively shown in a histogram on
the laptop. In parallel to these measurements, the generated
benchmark is statically analyzed by aiT and PLATIN to yield
upper bounds. The code metrics, indicating the complexity for
WCET analysis, are displayed on the screen.

Finally, the histogram contains all execution traces, the
actual WCET, and the upper bounds from a single benchmark.
We demonstrate how to automatically summarize results from
several benchmarks and thereby how ALADDIN is able to
reveal individual strengths and weaknesses of the WCET tools.
The source code of ALADDIN, GENE [1], and the WCET
metrics [5] is available at gitlab.cs.fau.de/gene.

REFERENCES

[1] P. Wägemann, T. Distler, C. Eichler, and W. Schröder-Preikschat, “Bench-
mark generation for timing analysis,” in Proc. of RTAS ’17, 2017.

[2] C. Rochange, “WCET tool challenge 2014,” Talk held at WCET ’14.
[3] AbsInt. aiT WCET analyzers. https://www.absint.com/ait/.
[4] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,

“The T-CREST approach of compiler and WCET-analysis integration,”
in Proc. of SEUS ’13, 2013.

[5] P. Wägemann, T. Distler, P. Raffeck, and W. Schröder-Preikschat, “To-
wards code metrics for benchmarking timing analysis,” in Proc. of RTSS
WiP ’16, 2016.

https://gitlab.cs.fau.de/gene

	Problem Statement
	The GenE benchmark generator
	The Aladdin tooling framework
	Demonstration
	References

