
Institute of Software Technology
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 142

Comparison of WCET Tools

Wolfgang Fellger, Sebastian Gepperth, Felix
Krause

Course of Study: Software Engineering

Examiner: Prof. Dr. Erhard Plödereder

Supervisor:

Commenced: September 1, 2011

Completed: November 21, 2011

CR-Classification: C.4, D.2.4

Contents

1 Introduction 3

1.1 Basics . 3

1.2 Goals of this study . 3

1.3 Participating tools . 4

1.3.1 aiT . 4

1.3.2 Bound-T . 4

1.3.3 METAMOC . 4

1.3.4 OTAWA . 4

1.3.5 TuBound . 4

1.3.6 WCA . 4

1.4 System configuration . 4

2 How we evaluate 5

2.1 Usability . 5

2.2 Analysis Features . 5

2.3 Annotation Capabilities . 7

2.4 Papabench WCET results . 7

3 Test details 8

3.1 aiT . 8

3.1.1 Usability . 8

3.1.2 Analysis Features . 9

3.1.3 Annotation Capabilities . 10

3.1.4 Papabench WCET results . 10

3.2 Bound-T . 13

3.2.1 Usability . 13

3.2.2 Analysis Features . 14

3.2.3 Annotation Capabilities . 15

3.2.4 PapaBench WCET results . 16

3.3 METAMOC . 17

3.3.1 Usability . 17

3.3.2 Analysis Features . 19

3.3.3 Annotation Capabilities . 19

3.3.4 Papabench WCET results . 19

1

3.4 OTAWA . 20

3.4.1 Usability . 20

3.4.2 Analysis Features . 21

3.4.3 Annotation Capabilities . 22

3.4.4 Papabench WCET results . 22

3.5 TuBound . 23

3.5.1 Usability . 24

3.6 WCA . 24

3.6.1 Usability . 24

3.6.2 Analysis Features . 26

3.6.3 Annotation Capabilities . 27

3.6.4 Papabench WCET results . 27

4 Comparisons and results 28

4.1 Feature Comparison . 28

4.2 Detailed WCET results . 29

4.3 Usability . 31

4.4 Conclusion . 31

5 Acknowledgements 32

A Microbenchmarks 33

A.1 Constant Loops . 33

A.2 Infinite Loops . 33

A.3 Branches . 35

A.4 Calling Contexts . 40

A.5 Jumptables . 41

A.6 Recursion . 43

2

1 Introduction

1.1 Basics

Safety-critical software is commonly designed for embedded systems and, more impor-
tantly, the requirements contain hard deadlines for how fast the system must respond to
certain situations; it is “real-time software”. This means, not finishing in time is as useless
as not finishing at all and must be counted as failure.

Of course, speaking of execution times as requirement introduces a very close interaction
with the actual hardware chosen for the project. Suddenly, the correctness of the software
depends on the choice of hardware – the execution speed on the particular CPU has
always to be kept in mind. However, over-dimensioning the CPU is not a solution: The
faster CPU does not only cost more money, but is likely less reliable as well.

It is also clear that an engineer can not simply be “confident” that the code runs in time –
neither does it suffice if measurements show that the code typically makes the deadline.

Thus, what we need as input for all further calculations is a guaranteed upper bound on
the worst case execution time of a piece of code, typically a “task”. Unfortunately, this
boundary can not be measured, because the input that would trigger the worst case is
typically unknown. The general approach is to derive this number by static analysis on
the compiled object code. Of course, while this estimate must be leaned to the safe side,
it should be as low as possible. In this study we will have a look at some of the available
tools.

1.2 Goals of this study

There are two major aspects when calculating a WCET boundary: First, statically inferring
upper bounds of the number of loop and function executions; second, modelling the actual
target architecture as closely as possible to arrive at a tight boundary in machine cycles.
These aspects are almost completely independent; in fact, some tools split them into two
separate binaries.

Our attempt in this study is evaluating and comparing a range of tools that is as broad
as possible; for this reason, we will focus on the first aspect. The target architecture is
mostly a means to get as many tools as possible on comparable grounds; therefore our
choice fell on the comparably simple and straight-forward ARM7 architecture. Special
’tricks’ such as emulating cache hits and memory access time will not play a role in our
benchmarks, though we briefly list such capabilities in the introductory section of the
corresponding tool.

Instead, we will focus on the tools’ abilities to statically analyse the program. Most con-
tenders do this from the compiled ARM binary; however, there is also one tool (TuBound)
which works directly on the source code, as well as the relatively odd-ball WCA which
works on Java source. Another aspect of this study is how well tools handle situations
that they can not automatically resolve. We will have a look at how time-consuming it is
to provide assertions, and of course general tool stability and polishedness.

After evaluating the quality of their statical analysis, the tools working on ARM binaries
will then be put to a ’classic’ test using the PapaBench benchmark.

3

1.3 Participating tools

1.3.1 aiT

One of the two commercial attenders, the aiT suite is provided by AbsInt.

Website: http://www.absint.com/ait

1.3.2 Bound-T

The other commercially available tool in the contest, provided by Tidorum Ltd. from
Finland.

Website: http://www.bound-t.com

1.3.3 METAMOC

METAMOC is a relatively new tool which focuses on simulating ARM hardware; it does
not do any loop boundary detection.

Website: http://metamoc.dk

1.3.4 OTAWA

OTAWA is a suite of the two tools oRange and oipet, developed by the University of
Toulouse in France.

Website: http://www.otawa.fr

1.3.5 TuBound

This tool, developed at the TU Wien, works directly on source code, with the help of a
source-to-source compiler.

Website: http://costa.tuwien.ac.at/tubound.html

1.3.6 WCA

WCA is the oddball of this study. It does not work on ARM binaries or even C source,
but on an imaginary hardware implementation of Java. While there is a Java port of the
PapaBench, its results are completely incomparable to the C version.

Due to the simple nature of our microbenchmarks, however, it can partake in the first part
of this study.

Website: http://www.jopwiki.com/WCET_Analysis

1.4 System configuration

We chose the ARM7 platform for this comparison, as this allows the largest subset of
tools available on the market.

To arrive at comparable numbers, we will use a plain ARM7 TDMI configuration without
caching and memory waits.

All our benchmark binaries are compiled using arm-elf-gcc 4.6.1 with optimizations dis-
abled and we made sure to use the exact same binaries for all tests.

More precisely, all sources listed in appendix 1 are compiled using the following command
line and then subjected to all tools (with the exception of METAMOC (3.3) and WCA (3.6),
see their respective chapters).

4

http://www.absint.com/ait
http://www.bound-t.com
http://metamoc.dk
http://www.otawa.fr
http://costa.tuwien.ac.at/tubound.html
http://www.jopwiki.com/WCET_Analysis

arm-elf-gcc FILE.c -g -mcpu=arm7 -o FILE.elf

GCC itself is compiled with this configuration:

./configure --prefix=/usr --target=arm-elf --disable-nls
--enable-languages=c,c++ --enable-multilib --enable-interwork
--with-local-prefix=/usr/lib/cross-arm --with-as=/usr/bin/arm-elf-as
--with-ld=/usr/bin/arm-elf-ld --with-newlib --with-float=soft
--host=x86_64-unknown-linux-gnu --build=x86_64-unknown-linux-gnu

Using this configuration, we ran into an unexpected difficulty regarding the standard li-
brary. The ARM7 does not have a floating point unit, but the PapaBench uses floating
point data types, which means that the operations are compiled as a function call. Two of
these functions, __aeabi_fmul and __aeabi_dmul, proved to be particularly difficult
to analyse automatically. As far as this can be expressed (see the respective chapters for
details), we provide the following assertions to the tools:

• All loops in __aeabi_fmul repeat exactly once

• __aeabi_dmul takes 80 cycles.

This is, of course, an oversimplification. Thankfully, we are not actually required to arrive
at a valid WCET result for PapaBench, but are only interested in comparable results.

2 How we evaluate

Every tool will be briefly introduced in their respective chapters and is then evaluated
in regard to usability, analysis features and annotation capabilities. Finally results from
analysing the PapaBench benchmark with the individual tool will be presented.

2.1 Usability

In terms of usability, the tools are examined in the aspects of installation procedure,
general usage of the tool, documentation, stability and error communication. Following
the explanation of the usability, the encountered obstacles are described.

2.2 Analysis Features

The main purpose of our microbenchmarks is to allow us to draw conclusions about
the analysis capabilities of the corresponding tools. The mapping from microbenchmark
results to features is as follows:

Static Loop Bound Detection

With this test we check whether the tool can derive loop bounds from a loop that can
easily be statically bounded, and whether it arrives at the correct result.

Relevant test cases:

CLOOP1 (Listing 1: constant_loop1.c): Simplest constant loop

CLOOP2 (Listing 2: constant_loop2.c): Constant loop with step size != 1

5

Infinite Loop Detection

This tests how the tool responds to infinite loops. Of particular interest is the clarity of the
error message. Of course, in no case should the tool crash in these simple tests.

Relevant test cases:

INFINITE1 (Listing 3: infinite_loop1.c): while(1); loop

INFINITE2 (Listing 4: infinite_loop2.c): never ending arithmetic loop

Arithmetic Loop Bound Detection

This tests how far the tools can go when deriving loop bounds. A simple loop which
performs integer division by two until zero is reached.

Test case:

INFINITE3 (Listing 5: infinite_loop3.c): finite loop using constant division and a potential,
but unused, break

Branch conditions within a function

Tests whether the tool can follow a static condition variable within a function call to exclude
branches that are never taken.

Relevant test cases:

BRANCH1 (Listing 6: branches1.c): Very simple if(1) test.

BRANCH2 (Listing 7: branches2.c): A static expression is used as condition.

BRANCH4 (Listing 9: branches4.c): Tests basic support for switch statement

Following branch conditions over function boundaries

The logical continuation of the previous feature is tracking branch conditions over function
boundaries.

Relevant test cases:

BRANCH3 (Listing 8: branches3.c): One function boundary

BRANCH5 (Listing 10: branches5.c): Two function boundaries

Calling Contexts

These benchmarks test the capabilities of the tool to differentiate loop boundaries by
calling contexts.

Relevant test cases:

MLOOP1 (Listing 11: simple_method_loop1.c): A function is called with two different
constant parameters.

6

MLOOP2 (Listing 12: simple_method_loop2.c): Same as previous, but the parameters
are static expressions.

Handling of dynamic function calls (Jumptables)

Selecting and calling a function from an array of function pointers is a common pattern,
but also very hard to statically analyse. However, a tool could support the user in creating
the necessary annotations by collecting possible candidates.

We will distinguish two levels of support:

• Solve the most simple situations automatically (first test)

• If an annotation is required, gather the possible candidates for the call and present
them in some form (second test)

Relevant test cases:

JUMP1 (Listing 13: jumptables1.c): using a constant index.

JUMP2 (Listing 14: jumptables2.c): a real dynamic call, based on user input.

Recursion handling

While recursion is a powerful programming tool, it introduces the risk of stack overflow, is
difficult to statically bound, and thus often outright forbidden in real-time applications.

This test is mostly to see whether the tool detects the recursion and how it reports it.
Ideally, it would allow to enter a maximum recursion depth. As expected, no tool was able
to bound this automatically.

Relevant test cases:

RECURSION (Listing 15: recursion.c): Recursive Fibonacci implementation.

2.3 Annotation Capabilities

In this section we will discuss the "mightiness" of the assertion language in detail.

This is roughly based on the feature test above (as we expect some tests to require user
input). We will explain how convenient assertions can be created, how jump tables are
handled, whether or not certain code paths can be "cut off" by declaring an explicit time
for it, and the languages capabilities in referring to code blocks/locations.

2.4 Papabench WCET results

We test a total of ten entry points from the PapaBench for ARM, denoted in table 1.

There are only two loops within these entry points, namely in send_data_to_-
autopilot_task and servo_transmit. The final WCET results will use 10 for both
loops, however we will note if a tool is able to calculate the bound by itself.

7

Module Entry point Shorthand

Autopilot

altitude_control_task AA

climb_control_task AC

link_fbw_send AL

stabilisation_task AS

__vector_5 AV

Fly-By-Wire (FBW)

check_failsafe_task FCF

check_mega128_values_task FCM

send_data_to_autopilot_task FSD

servo_transmit FST

test_ppm_task FT

Table 1: Tested Papabench entry points

3 Test details

3.1 aiT

aiT is part of the AbsInt Advanced Analyzer software distribution by AbsInt Angewandte
Informatik GmbH. aiT is available for many different processor architectures, including
ARM. It incorporates loop boundary calculation and WCET analysis in one application
which is operated with a graphical user interface. aiT is available for Windows- and Linux-
based systems.

3.1.1 Usability

Installation.

The Linux version of aiT provides a simple interactive shell script for installation which
worked without any problems.

Concept.

aiT is an integrated, graphical tool for WCET computation. It guides the user through
the process of executing a WCET analysis from the specification of input binaries to the
viewing of computation results. Amongst other features, aiT includes panes for specifying
input files, processor and memory configuration, an editor with syntax highlighting for an-
notation files, a disassembly viewer, an interactive call graph viewer and some inspector
views on the input (like e.g. a list of symbols).

Familiarisation.

aiT is very easy and straightforward to use. While it does provide a lot of configuration
options, one can get to a first WCET computation result very quickly. Advanced configu-
ration through annotations can be added later.

8

Assertion creation.

Assertion files can be written with aiT’s integrated editor, which features syntax high-
lighting for the annotations and a wizard to create new annotations. Annotations can be
applied per computation target, globally for the whole project or as part of a configuration
profile.

Documentation.

aiT includes a PDF manual as well as a quick reference for its annotation syntax. We
found especially the latter one very useful.

Stability and error communication.

aiT runs stable and did not crash once while we worked with it. It reports errors and
warnings while computing a WCET target as part of the log output, highlighted with red
and orange background respectively. It is possible to filter the log for warnings and errors.

3.1.2 Analysis Features

Loop Bound Detection

aiT was able to calculate all static loop bounds correctly without further configuration. It
also gave informative feedback when encountering the infinite loop tests telling the user
which loop is or may be unbounded. However, aiT was not able to process the non-
obvious finite loop INFINITE3, which requires arithmetic analysis.

Branch conditions and calling contexts

Both branch conditions determinable within a function and branch conditions depen-
dent on a determinable calling context were processed correctly by aiT. It recognized
the branches that will never be called and excluded them from the WCET calculation.
Considering calling contexts, aiT was able to distinguish calls to a function between their
different calling contexts.

Handling of dynamic function calls (Jumptables)

aiT was able to resolve the computed call in JUMP1 as it is non-ambiguous. In JUMP2.
It tells the user that there are unresolved computed calls and continues to calculate a
WCET without information about possibly called functions. It clearly states in the output
that the result may not be a WCET. It is possible to annotate the dynamic function call
and tell aiT which functions can possibly be called by it.

Recursion handling

aiT simply reports that the problem RECURSION1 is unbounded. However, it is possible
to annotate the maximum recursion depth.

9

3.1.3 Annotation Capabilities

aiT provides a plain-text, human-readable annotation syntax. Items in the binary, such
as functions, loops or branches, can be referenced by their name (if they have one), their
address, or their relative location in another structure, like e.g. the third loop in a function
with a certain name.

The following information can be annotated:

• Targets of computed calls and branches

• Compiler

• Clock rate of target processor

• Loop bounds

• Properties of memory areas

• Register values

• Recursion

• Properties of routines and calls that should not be analysed

• Infeasible code

It is also possible to specify additional output information, like the calls to a certain func-
tion.

3.1.4 Papabench WCET results

We wrote the following global annotations (which correspond to those used with Bound-
T):

loop "__mulsf3" + 1 loop exactly 1;
loop "__mulsf3" + 2 loop exactly 1;

snippet "__aeabi_dmul" is not analyzed and takes max 80 cycles
and does not violate callingconventions;

Additionally to those global annotations, we needed additional annotations for some entry
points.

Module Fly-By-Wire:

Without annotation the function __floatsidf, AbsInt would output an error saying that
it encountered an unresolved branch in some - not in all - calling contexts. To get a decent
result, we annotated the WCET Bound-T calculated of this function, which is 74 cycles:

snippet "__floatsidf" is not analyzed and takes max 74 cycles
and does not violate callingconventions;

Curiously, the calculated WCET of another function __adddf3 changed when we added
this annotation. The call graph indicated that both functions share some anonymous
code. As these functions are functions from the standard library and not the PapaBench

10

itself, we did not have the time and resources to track down the real cause of this issue.
A comparison of the call graph before and after this annotation are depicted below.

The affected entry points are: FCM, FSD and FTP.

For FST, AbsInt would report that the problem is unbounded. We manually specified the
boundary of 10 (Bound-T was able to deduce this automatically):

loop "servo_transmit" + 1 loop exactly 10;

Module Autopilot:

The entry points we needed an additional annotation for in this module were AC and AS.
The problem here was similar to the problem with __floatsidf in the other module.
This time, the problematic function was __extendsfdf2. Again, we had a call to __-
adddf3, which changed its WCET after we annotated __extendsfdf2 (only in AC - AS
does not call __adddf3).

snippet "__extendsfdf2" is not analyzed and takes exactly 79 cycles
and does not violate callingconventions ;

With this, we arrived at the results shown in table 2.

Papabench results (cycles)

Autopilot Fly-By-Wire

AA AC AL AS AV FCF FCM FSD FST FT

399 1694 58 1611 99 1080 1659 729 873 3745

Table 2: Papabench results of AbsInt

11

Figure 1: Screenshot of the AbsInt call graph before annotating __extendsfdf2

Figure 2: Screenshot of the AbsInt call graph after annotating __extendsfdf2

12

Call graph of test_ppm_task
time 3691

test_ppm_task
one call from one path
time 3691
self 103, callees 3588

last_radio_from_ppm
one call from one path
time 2019
self 450, callees 1569

 one call from one path
 time 2019

servo_set
one call from one path
time 1569
self 244, callees 1325

 one call from one path
 time 1569

__aeabi_i2f
14 calls from 14 paths
time 560 = 14 * 40

 14 calls from 14 paths
 time 560 = 14 * 40

__mulsf3
6 calls from 6 paths
time 462 = 6 * 77

 6 calls from 6 paths
 time 462 = 6 * 77

__fixsfsi
9 calls from 9 paths
time 162 = 9 * 18

 9 calls from 9 paths
 time 162 = 9 * 18

__aeabi_fadd
5 calls from 5 paths
time 385 = 5 * 77

 5 calls from 5 paths
 time 385 = 5 * 77

__floatsidf
6 calls from 6 paths
time 444 = 6 * 74

 6 calls from 6 paths
 time 444 = 6 * 74

__aeabi_dmul
8 calls from 8 paths
time 640 = 8 * 80
8 paths with asserted time

 8 calls from 8 paths
 time 640 = 8 * 80

__fixdfsi
6 calls from 6 paths
time 102 = 6 * 17

 6 calls from 6 paths
 time 102 = 6 * 17

__adddf3
one call from one path
time 139

 one call from one path
 time 139

Figure 3: A typical call graph produced by Bound-T

3.2 Bound-T

Bound-T is the other commercial tool in this contest and to our knowledge the only con-
tender written in Ada. Compared to AbsInt, it is much less polished, lacking an installer or
a graphical frontend. Features and documentation are comparable, though, and Bound-T
seems to have a slight advantage when automatically estimating loop bounds.

3.2.1 Usability

Installation.

Two archives with the main and auxiliary binaries have to be downloaded and unpacked.
The only non-trivial part is that adjustments to the search path are required before it runs
correctly. Failure to do so leads to the tool crashing mid-analysis. Since the tool explicitly
needs the exact versions of the auxiliary binaries anyway, it would have been easier if it
would just look in a fixed path relative to the main binary.

Concept.

Bound-T is a ’unix style’ command line utility, meaning that its output is meant to be post-
processed by other filters. For example, for the call graph visualization, a GraphViz script
is created. As a consequence, every aspect is easily scriptable, partly making up for the
lack of convenience functionality in the tool itself.

Familiarisation.

Bound-T is straight-forward to use, and the web site provides a good example demon-
strating the most important features. Beyond that, there is extensive documentation avail-
able for both the tool itself as well as the assertion language.

Time for running the benchmark.

Bound-T was able to automatically able to infer most of our loop boundaries. After using
a shell macro to contain the relevant parameters, all microbenchmarks could be quickly

13

processed.

For the Papabench benchmark, Bound-T had no problems at all, apart from difficulties
with two arithmetic functions from the linked-in standard library (see below).

Assertion creation.

Not surprisingly, assertions are given via external text files. This of course means that
there is no syntax support at all, and while the basic syntax is easy to learn, Bound-T’s
assertion language is very powerful. For a casual user, looking up details in the reference
manual is virtually required.

Documentation.

Extensive documentation is available both for the program as well as its assertion lan-
guage. The website also provides a simple "tutorial" which demonstrates all basic func-
tionality in a step-by-step fashion.

Stability and error communication.

On one of our test machines, the tool tended to quit with a non-descript CALCULA-
TOR_ERRORs when tabular output was requested. The exact same operation worked
flawlessly on another machine. We worked directly with the maintainer, Niklas Holsti, in
an attempt to resolve this rather mysterious issue, but were unable to pinpoint it.

Apart from that, one would expect a command line tool to terminate on problems anyway,
and the messages usually pinpoint the location precisely that needs the user’s attention.

Export functions.

Since graph drawing works via means of GraphViz, Bound-T’s graph generation is ex-
cellently scriptable and accessible for further usage. Any other output is text and can be
trivially captured anyway.

In practice, choosing from the multitude of available graph drawing options commonly
required a glance into the manual and could probably profit from a graphical frontend.

3.2.2 Analysis Features

Loop Bound Detection

Bound-T was able to determine most loop boundaries in the micro benchmark automati-
cally, detected the infinite loops, and has a way to ignore them for the purpose of immortal
tasks.

However, infinite_loop3.c, which is actually finite, could not be bounded. According to the
manual, only addition, subtraction and constant multiplication is supported for deriving
loop bounds, while this loop uses constant division.

14

Bound-Ts did not succeed in bounding the two arithmetic functions from the standard
library, __aeabi_fmul and __aeabi_dmul, but could bound every loop in the Pa-
paBench, contrary to AbsInt.

Following branch conditions within a function

It appears that branch conditions can be followed within a function only.

The functionally identical branch2.c (listing 7) and branch3.c (listing 8) thus had vastly
different WCET bounds – for the second, the longer, but actually unused branch was
assumed.

This turned out to be Bound-T’s main disadvantage when compared to AbsInt and re-
duces the usefulness of its calling context implementation.

Calling Contexts

Calling contexts are supported and mostly useful for loop bounds. Conditional execution
seems only to be taken into account "downwards" the call graph, not if the condition bases
on the result of another function call.

Handling of dynamic function calls (Jumptables)

Dynamic calls are supported, but can only be resolved automatically in specific cases,
such as a switch statement. In any other case, the user is asked to provide a list of possi-
ble functions in the annotation. No effort is made to build a list of candidates automatically,
even if they could be determined statically (see listing 13).

Recursion handling

Recursion is detected and reported with an appropriate error message. This aborts the
analysis, and there is no possibility to resolve the situation, e.g. by specifying a maximum
recursion depth manually.

3.2.3 Annotation Capabilities

Bound-T has a very extensive assertion syntax. Particularly noteworthy is the ability
to specify code locations: Apart form line numbers, one can also specify blocks such
as loops relative to each other and based on the used variables, so the assertion can
’survive’ simple modifications in the program.

15

3.2.4 PapaBench WCET results

The following assertions were used for PapaBench:

subprogram "__aeabi_dmul"
time 80 cycles;

end subprogram;

subprogram "__mulsf3"
all loops repeat 1 time; end loop;

end subprogram;

Please note that none of the loop bounds in PapaBench itself had to be specified, but
were correctly deduced automatically.

Papabench results (cycles)

Autopilot Fly-By-Wire

AA AC AL AS AV FCF FCM FSD FST FT

383 1637 56 1570 97 1597 1640 705 801 3691

Table 3: Papabench results of Bound-T

Comparison with AbsInt

The tools are pretty much on par, with Bound-T typically a few cycles lower than AbsInt;
probably due to slight differences in the memory model. We will have a closer look
at three instances that were of particular interest: AC (Autopilot: climb_control_-
task), FCF (Fly-By-Wire: check_failsafe_task) and FCM (Fly-By-Wire: check_-
mega128_values_task).

climb_control_task

It is to be noted that in climb_control_task, Bound-T manages to automatically arrive
at a bound for __extendsfdf2 and __adddf3 at 79 / 139 cyles, while AbsInt generates
an "Anon" block which it is unable to analyse.

Since this is deep in the standard library and probably hand-optimized assembly, we did
not press the issue further.

When the length of __extendsfdf2 is given to AbsInt, the warning for __adddf3 van-
ishes as well and it yields a result of 1694 cycles.

check_failsafe_task and check_mega128_values_task

As can be seen in figure 4, the call graphs of these two functions are almost the same.
In Bound-T, the results for all subprograms are also the same, in particular 74 cycles for
__floatsidf and 139 cycles for __adddf3.

AbsInt seems to be able to make more use of calling contexts, reducing the call to __-
floatsidf to 5 cycles for check_failsafe_task (it is, however, unable to bound it

16

Call graph of check_failsafe_task
time 1597

check_failsafe_task
one call from one path
time 1597
self 28, callees 1569

servo_set
one call from one path
time 1569
self 244, callees 1325

 one call from one path
 time 1569

__floatsidf
6 calls from 6 paths
time 444 = 6 * 74

 6 calls from 6 paths
 time 444 = 6 * 74

__aeabi_dmul
8 calls from 8 paths
time 640 = 8 * 80
8 paths with asserted time

 8 calls from 8 paths
 time 640 = 8 * 80

__fixdfsi
6 calls from 6 paths
time 102 = 6 * 17

 6 calls from 6 paths
 time 102 = 6 * 17

__adddf3
one call from one path
time 139

 one call from one path
 time 139

Call graph of check_mega128_values_task
time 1640

check_mega128_values_task
one call from one path
time 1640
self 71, callees 1569

servo_set
one call from one path
time 1569
self 244, callees 1325

 one call from one path
 time 1569

__floatsidf
6 calls from 6 paths
time 444 = 6 * 74

 6 calls from 6 paths
 time 444 = 6 * 74

__aeabi_dmul
8 calls from 8 paths
time 640 = 8 * 80
8 paths with asserted time

 8 calls from 8 paths
 time 640 = 8 * 80

__fixdfsi
6 calls from 6 paths
time 102 = 6 * 17

 6 calls from 6 paths
 time 102 = 6 * 17

__adddf3
one call from one path
time 139

 one call from one path
 time 139

Figure 4: Call graphs of check_failsafe_task and check_mega128_values_task

when it actually executes in check_mega128_values_task). At six calls, this makes
for a large advantage of AbsInt.

3.3 METAMOC

METAMOC is a relatively new contender with a novel approach: Instead of statically de-
riving properties from the binary or source, the CPU itself is modelled, and then handed to
a model checker. This means that a call graph in the classical sense is never constructed,
and non-determinism can be used for unknown dynamic properties.

Unfortunately, the tool itself clearly shows its experimental nature by an utter lack of
polishedness. In its current state, it is extremely hard for outsiders to work with.

Additionally, METAMOC is focused on precisely emulating the ARM9 architecture. It does
not do any loop boundary detection, which means it cannot take part in the first part of
this study.

As a result, we are probably not giving it the honour it deserves; an eye should definitely
be kept on further development of this tool.

3.3.1 Usability

Installation.

METAMOC is only available as source, so has to be compiled before it can be used. It
relies on a now deprecated version of Python to build, so we decided to set up a virtual
machine for it. We tried to make it work with arm-elf toolchain instead of the default arm-
angstrom-linux-gnueabi toolchain, but did not succeed. We resorted to recompiling the
benchmark using arm-angstrom-linux-gnueabi-gcc, losing comparability.

The value analysis reproducibly locked up during our tests, which could only be resolved
using the command line tools and personal communication with the maintainer.

Concept.

METAMOC parses the output of GNU objdump and generates a system model, which
is then handed to the graphical model checker UPPAAL. An actual WCET value can be
retrieved by issuing the appropriate query.

17

The METAMOC GUI frontend. Unfortunately, we never saw it work.

Figure 5: METAMOC

The GUI is supposed to automate and hide the usage of both tools, but we did not get
this to work properly.

This led to the following very unfortunate workflow:

• Run command-line tool with appropriate parameters to avoid the crashing value
analysis

• Run UPPAAL on the generated model file

• Navigate model and find places where missing loop bounds can be entered

• Manually enter a specific query to retrieve WCET value.

Needless to say, this was very confusing and time-consuming for someone unfamiliar
with the tools and environment like us.

Assertion creation.

Assertions can either be given after model creation within the model checker UPPAAL, or
directly in the source code using a specially-formed comment.

Both methods are, in our opinion, not very usable: Source code annotations obviously
require repeated recompilations and are thus impossible in situations where the binary
is fixed; annotating in the UPPAAL GUI requires that the user can complete the above
workflow himself, which includes typing in a specific query string.

A mode that generates the model file, interactively asks for the loop bounds to use, and
then continues to calculate the WCET would have been more helpful in our opinion.

18

Documentation.

One of the largest problems for outsiders like us is the lack of documentation. There is
virtually no documentation available at all, apart from the original thesis the program is
based on.

Stability.

As noted above, the value analysis tended to lock up, consuming full CPU power and
ever more memory.

Furthermore, several functions from the standard library linked into the PapaBench used
opcodes that were not supported and aborted the analysis. To make matters worse,
METAMOC relies on UPPAAL to generate the call graph, meaning it will always process
every function in the file, so there is no way to resolve this except editing the source code.

Error communication.

Errors produced by the main program were clear enough; the locking value analysis
obviously did not give any indication at all.

The more complex benchmarks in our test, for example the jumptables, lead to UPPAAL
complaining about syntax errors in the model and were totally indecipherable for us.

3.3.2 Analysis Features

As mentioned above, loop bound detection is not implemented.

For some reason, the infinite loop in listing 3 is not even detected as loop, and the system
yields a WCET time of 28 cycles (which is thus the most significant underestimation case
in this study).

The recursion is also not detected and handled as loop. This may actually work in simple
cases, but looks more like an oversight than a feature.

3.3.3 Annotation Capabilities

Annotations are very simple and only allow to specify loop boundaries.

Because of the above mentioned syntax errors in the generated model, we did not get to
test how this is supposed to work with situations that require more complex input - our
only assumption is that it is currently impossible.

3.3.4 Papabench WCET results

Since METAMOC does not perform any loop boundary detection, our hopes were with
the PapaBench.

Unfortunately, this turned out to be mostly impossible as well, for the following reasons:

• As mentioned above, we can not use the same binary as for the other tools. Since
annotations are given in source code, we can not even use the same same source.

• Also as mentioned above, the value analysis feature did not work at all.

19

• METAMOC crashes when analysing some of the standard library functions.

• All functions linked into the binary are unconditionally analysed; there is currently
no way to specify another entry point than main anyway.

After manually trimming and rearranging AV’s code into a standalone binary and changing
the CPU model to the one we assume, we finally managed to get a number of 125 cycles.
For comparison, Bound-T evaluated the modified code at 163 cycles, and AbsInt at 165
cycles.

The slightly lower value may be due to METAMOC simulating an ARM9 instead of ARM7,
or us being unable to completely match the cache model.

3.4 OTAWA

OTAWA is actually a collection of several related tools, mainly oipet, oRange and the
OTAWA Eclipse plugin.

3.4.1 Usability

Installation.

Both the command-line tools and the Eclipse plugin can be downloaded as binaries for
Windows and Linux. The command-line tools contain a simple install script while the
Eclipse plugin can simply be copied into the Eclipse dropin folder. There are no further
dependencies to be resolved.

Concept.

oipet is a command-line tool for WCET calculation which takes a binary file and one or
multiple entry points. oipet does not calculate loop bounds, so one can provide a Flow
Facts file where the loop bounds of the binary are specified.

oRange is a command-line tool for determining loop bounds that works on source code.
Unfortunately, it produces XML output, which is incompatible with oipet. There is no tool
for converting oRange’s output into a Flow Facts file as required by oipet, but it can be
done by hand.

The OTAWA Eclipse plugin integrates into the Eclipse integrated development environ-
ment for C/C++. It is a graphical frontend for oipet and simplifies the specification of the
flow facts. It also features a control flow graph viewer.

Familiarisation.

oRange and oipet provide a set of options which is easy to understand. The XML output
of oRange is human-readable and not too complex. As we did not use Eclipse for C/C++
development before, we cannot give a detailed rating on how well it integrates into the
Eclipse workflow, but this is definitely a feature worth mentioning; the other tools covered
here do not integrate in an IDE.

20

Assertion creation.

When using the Eclipse plugin, assertions can be created on the fly. The WCET cal-
culation queries any loop bounds and other information it needs in order to finish the
calculation when it is launched. The needed fields are displayed in a tree view of the
current test where the fields can be filled with the required information. It is also possible
to load Flow Facts files that give information on loop bounds.

Documentation.

The oipet tool has some documentation on the OTAWA wiki page. The OTAWA Eclipse
plugin has a few html pages documentation which were made available by Christiane
Rochange for the WCET Challenge 2011. As for now, no other public documentation on
the plugin is available. For oRange, there is no documentation available apart from the
command line output.

Stability and error communication.

The Eclipse plugin occasionally yields a segmentation fault, causing Eclipse to crash. On
one of our testing systems, it crashed reproducibly every time we wanted to open the
window for choosing a processor configuration. On another system, this worked without
errors. The Eclipse plugin works with the Galileo and Helios releases of Eclipse. It does
not work with the current Indigo release.

The command line tools mostly worked without errors or displayed understandable error
messages.

3.4.2 Analysis Features

Loop Bound Detection

oRange was able to calculate all loop bounds correctly. Notably it was the only tool which
did not report that the loop in the test INFINITE3 was unbounded. Instead, it calculated
the correct loop boundary of 5. When encountering infinite loops, oRange reports a
WCET value of NOCOMP.

Branch conditions and calling contexts

oRange processed all branching tests without problems. It was able to calculate which
branches will never be executed. oRange was also able to distinguish loop bounds be-
tween calling contexts of a function. But in these tests (MLOOP1 and MLOOP2) it re-
ported that the calculated loop boundaries per calling context may not be exact, even
though they are.

Dynamic function calls an recursion

The OTAWA tools do not provide support for automatically resolving dynamic function
calls. However, oipet is able to take a specification of possible targets of the dynamic call

21

from the user. The Eclipse plugin queries the possible targets from the user in its GUI.

oRange does not support analysis of recursive calls. It even outputs a Fatal error:
exception Failure("parameter") when analyzing recursive code. oipet handles
recursion just like loops, it needs a maximum iteration value in order to process the re-
cursion. In the Eclipse plugin, one can annotate this just like a normal loop boundary.

3.4.3 Annotation Capabilities

oipet (and the Eclipse plugin, which incorporates oipet’s features) calculates a WCET
based on flow facts which can be given as a Flow Facts file or entered in the Eclipse
graphical user interface. The tool does not attempt at calculating any flow facts from the
binaries.

oipet works on different hardware configurations by the means of specifying a processor
and a cache model (defined in XML) at the command line. In Eclipse, this can be done
with a graphical selection dialog.

While oRange’s output specifies loop boundaries dependent on the calling context, oipet’s
Flow Facts input is not able to handle this information. Here, loop boundaries can only be
specified globally as one number. Neither differences between calling contexts nor the
information about whether the boundary is exact or an estimate can be included. The first
restraint is the one that has an impact on oipet’s WCET calculation possibilities, forcing
it to apply the maximum loop boundary from all calling contexts to every execution of a
loop.

3.4.4 Papabench WCET results

One of our microbenchmarks incidentally was more interesting than planned, and un-
veiled a bug in OTAWA, leading to missed calls and underestimated WCETs.

At the end of jumptables1.c, one can see a "divide by 10" operation. Our intention was
to have something we could distinctively see in the disassembly before the very compiler-
specific return from main begins. While we knew the ARM7 does not have a floating point
unit, we oversaw that there is also no integer division. As a result, the compiler replaced
it with a function call. We then noticed that OTAWA did not include this function call at all.

After further enquiry with the maintainers, we could gather the following:

• The compiler decided to translate the dynamic call not as one of the usual Bxx
instructions, but as direct writes to the LR (return address) and PC (instruction
counter) registers.

• OTAWA failed to recognize this as a function call. At the time of writing, there is also
no possibility to specify this in annotations (the maintainers assured us that they will
fix this.)

• As a result, OTAWA silently ignored any instructions in main following this call, not
even including them in the disassembly (see figure 6)

Of course, distinguishing a function call from a simple branch is tricky in the general case,
and we do not blame OTAWA for that. However, what we find bothering is the fact that
OTAWA behaved completely silent about this.

Since the ignored instructions were even missing from the disassembly, a user has no
chance to see what is happening here unless he actively compares with another tool,

22

which is certainly not to be expected by an average user (even we were lucky to have
stumbled upon this.) The end result is rather catastrophic: OTAWA delivers a well-hidden
underestimation on the WCET.

This discovery is probably related to similar suspicions we had during the "Daimler ex-
periment" in the WCET Challenge 2011, which indicates that this problem is not limited
to the ARM platform.

The call to three at 0x8328 is the last instruction for main shown in OTAWA. For com-
parison, the flow and disassembly for the following instructions as produced by Bound-T.

Figure 6: Missing instructions in OTAWA

Papabench results (cycles)

Autopilot Fly-By-Wire

AA AC AL AS AV FCF FCM FSD FST FT

405 1797 56 1693 97 2066 2112 895 871 4239

Table 4: Papabench results of OTAWA

3.5 TuBound

TuBound is a WCET analysis and program development toolchain currently developed at
the Vienna University of Technology. It operates with source code and uses the ROSE
compiler for source-to-source transformation and analysis.

23

3.5.1 Usability

Installation

TuBound depends on some large libraries, most prominently the ROSE compiler, which
is only available as source code and needs some time to compile.

TuBound itself also has to be compiled, but despite efforts on both the TuBound team’s
and our side the compilation could not be completed successfully. It was therefore not
possible to evaluate TuBound in this study.

3.6 WCA

WCA is the WCET analyser of JOP, the Java Optimized Processor, an implementation
of the Java Virtual Machine in hardware and is maintained by the Vienna University of
Technology in Austria.

3.6.1 Usability

Installation

WCA is open source and available as part of JOP(Java Optimized Processor). The
source code can be obtained per git from the jop repository.

JOP depends on Altera Quartus, a closed source FPGA design software, which has to
be downloaded from the Altera website and is installed with a graphical installer.

Building of JOP itself is accomplished exclusively with make and is very straight forward.
JOP does not install itself onto the system, but stays in its source directory.

Concept

The tool is used via command line, operates on Java source code and generates HTML
reports.

Familiarisation

WCA (and JOP) is controlled completely with makefiles and the make command, and can
only be used from inside the JOP directory. Furthermore, the code to analyse has to lie
in a specific location within the JOP directory tree. Usage of this tool typically consists of
first running the WCET analysis with a command like this:

make P1=microbenchmarks P2=branches P3=branches1 java_app wcet \
WCET_METHOD=main USE_DFA=yes WCET_OPTIONS="--wcet-preprocess"

This compiles the Java sources and then executes various analysis tools.

After successful completion of the analysis, a HTML report can be generated from the
analysis output, again with a make command, which contains call graphs produced with
dot, as shown in Figure 7.

24

Figure 7: WCA HTML Report

Assertion creation

Loop Bound assertions can be annotated directly in the Java source code, in the same
line as or directly after the loop construct.

Documentation

The Java Optimized Processor in general has a very good documentation and the WCET
principles are described in detail in the handbook. As usage documentation for WCA
exists only a wiki page and a text file which describes the annotation language.

Error communication

Errors are mostly in form of Java exceptions with stack trace or Java compilation errors
and are not very readable.

Export functions

Instead of HTML, a CSV file can be generated.

25

Obstacles and Problems

Since WCA cannot be installed on the system and has to be used out of the JOP source
tree, the files to analyse must be placed therein.

The generated reports are at times rather cryptic, especially for the results of the data
flow analysis.

There also exists an unresolved problem with detecting a cyclic call graph while creat-
ing new objects (whithin GC.newObject), which prevented us from testing some ported
microbenchmarks.

If loop bounds could not be automatically determined, a default value of 0 to 1024 is set
and the computation succeeds with a warning hidden somewhere in the console output.

3.6.2 Analysis Features

The following features have been evaluated with ported versions of the C microbench-
marks.

Static Loop Bound Detection

WCA detects static loop bounds automatically without problems.

Infinite Loop Detection

The tool detects obvious infinite loops within the control flow graph (test case INFINITE1),
but only communicates this in the command line tool and not in the report. It does not
detect complex infinite loops (test case INFINITE2), but bounds the loop with null and
approximates then with (0,1024).

Arithmetic Loop Bound Detection

WCA cannot calculate complex loop bounds as in INFINITE3 and assumes a default of
1024.

Branch conditions within a function

Branches are correctly detected and considered. The unused branch in test case
BRANCHES1 is being detected early in the call graph. The call graph for BRANCHES2 is
generated completely and wcet values for every branch are calculated. In the final WCET
calculation the branch is correctly recognized.

Switch cases are not correctly detected and in BRANCHES4 the tool assumes a fall
through starting at the first case.

26

Following branch conditions over function boundaries

The tool can determine branch conditions through one function call (BRANCH3), but not
more (BRANCH5).

Calling Contexts

WCA was not able to track variables through method calls and use the parameters of a
method call. It approximates the loop bound with the default value of 1024.

Handling of dynamic function calls (Jumptables)

The microbenchmarks for testing jumptables have been ported to Java with abstract
classes and inheritance, since function pointers are not possible in Java. However,
WCA does not handle object creation correctly and returns with a cyclic call graph in
GC.newObject.

Recursion handling

Recursions are being detected and a cyclic call graph error is thrown.

3.6.3 Annotation Capabilities

The annotation language of WCA allows a definition of loop bounds with exact, lower
and upper bounds and references to Java constants or method arguments with simple
arithmetic operators. Some documented features, like method arguments, seem not to
be implemented.

3.6.4 Papabench WCET results

For WCA we used the already ported jPapabench by Michal Malohlava, which is also
included in the JOP distribution. The WCET results cannot be compared with those of
the other tools, since both the tested software and the hardware platform are completely
different to the rest.

The port is not complete and amongst other things, link_fbw_send is not implemented
and the analysis of check_failsafe_task aborts with cyclic call graph in GC.newObject.

Papabench results (cycles)

Autopilot Fly-By-Wire

AA AC AL AS AV FCF FCM FSD FST FT

29054 126515 (21) 156974 - CCG 9710 11574 - 4629

Table 5: PapaBench results from WCA

27

4 Comparisons and results

4.1 Feature Comparison

Feature aiT Bound-T METAMOC OTAWA WCA

Static Loop Bound Detection ! ! % ! !

Arithmetic Loop Bound De-
tection

% %2 % ! %

Infinite Loop Detection ! ! %4 ! (!)

Branch conditions within a
function

! ! % ! (!)

Cross-function branch condi-
tions

! % % ! (!)

Calling Contexts ! ! % ! %

Handling of dynamic function
calls

! %1 %5 (!)1 %

Recursion handling (!)3 % %6 (!)3 %

1 Calling one of several targets supported, but no attempt to find candidates automatically
2 Only addition, subtraction, and constant multiplication is supported
3 One can provide a maximal recursion depth manually.
4 Tool ignored the infinite loop
5 Syntax error in resulting model
6 Recursion interpreted as loop

Table 6: Feature Comparison Chart

Loop Bound Detection

oRange of the OTAWA suite is the unexpected winner here. It was able to solve even the
complicated arithmetic loop in listing 5.

Although Bound-T has only limited support for arithmetic loop bound detection, in prac-
tice it showed to make a difference. Only two assertions were required for the entire
PapaBench, while AbsInt struggled significantly more.

Calling contexts and following branch conditions

AbsInt, Bound-T and oRange of the OTAWA suite all are able to differentiate between
calling contexts, e.g. can make use of the fact that a function may have wildly different
execution times when called with different parameters.

In our tests, however, Bound-T was not able to follow condition variables through function
call boundaries. This put it at a serious disadvantage if e.g. parts of a function are always
skipped in certain calling contexts. This not only showed in the microbenchmarks, but
also clearly in the case of FCF, where it is over 500 cycles behind AbsInt.

The situation is even more unlucky for the OTAWA suite: While oRange has capabilities

28

on par with AbsInt, the results cannot be communicated to the oipet utility; the maximum
loop count must be used for all contexts (as a result, the WCET for FCF and FCM are
almost the same.)

Handling of dynamic function calls (Jumptables)

It clearly shows that AbsInt has put a lot of effort into this area, and it has by a wide
margin the best capabilities to resolve dynamic calls automatically or semi-automatically
(e.g. by describing the structure of records containing pointers).

Bound-T and OTAWA are both able to handle branches to one of multiple targets, but
require the user to manually specify the candidates.

Unfortunately, we were unable to find out whether METAMOC has capabilities in this
regard.

Recursion handling

Recursion is a mostly ignored language feature in the area of real-time programming, so
the basic support provided by AbsInt rounded off its image as the most feature-complete
tool in this contest.

METAMOC seems to have a more accidental support for this, treating recursion as a loop.

4.2 Detailed WCET results

Entry Point aiT Bound-T METAMOC OTAWA WCA

AA 399 383 - 405 29054

AC 1694 1637 - 1797 126515

AL 58 56 - 56 (21)

AS 1611 1570 - 1693 156974

AV 99 97 - 97 -

modified AV 165 163 125 - -

FCF 1080 1597 - 2066 -

FCM 1659 1640 - 2112 9710

FSD 729 705 - 895 11574

FST 873 801 - 871 -

FT 3745 3691 - 4239 4629

Table 7: PapaBench Result Comparison

29

Microbenchmark aiT Bound-T OTAWA3 WCA

CLOOP1 221 219 - 222

CLOOP2 88 86 - 89

INFINITE1 ∞ ∞ - 99

INFINITE2 ∞ ∞ - 99

INFINITE3 ∞ ∞ - 2174129

BRANCH1 41 39 - 129

BRANCH2 51 49 - 154

BRANCH3 60 875 - 253

BRANCH4 48 46 - 17439

BRANCH5 114 2028 - 35189

MLOOP1 686 684 - 61748

MLOOP2 695 693 - 61773

JUMP1 5874 58401 - -

JUMP2 95912 96522 - -

RECURSION - - - -

1 After giving the assertion "three is called"
2 After giving the assertion "One of one to five is called"
3 We did not calculate WCETs of the microbenchmarks with OTAWA, because most of
the features we tested for are implemented in oRange, which is not directly able to hand
over its results to oipet. For OTAWAs WCET features, refer to the Papabench results.

Table 8: Microbenchmark Result Comparison

30

4.3 Usability

The tools we tested have quite different concepts for user interaction: AbsInt is a project-
oriented configuration tool which provides the user with a rich set of parameter input and
configuration. All configuration except the annotations is stored in one file and thus is
easy to migrate and archive for later reference.

OTAWA has taken some first steps into the same direction, but has still a long way to go
in terms of stability and usability. Besides the occasional and sometimes reproducable
crashes of the Eclipse plugin, it currently fails to save the created tasks and configuration
of the OTAWA project view into the Eclipse project, so the user has to configure everything
again when he closes and re-opens Eclipse.

Bound-T takes a completely different approach as it a command line tool which is de-
signed to be used in user-defined scripts. Considering that the user of a WCET tool is
usually a professional, this seems to be a decent approach, and as there is plenty of
documentation available, its core is not really harder to use than the GUI-based tools.
In particular, being scriptable opens it for applications such as automatically running in
a build script, and tasks such as "export a graph for all of these entry points" become
possible.

WCA and METAMOC, and in particular TuBound, are all currently too cryptic and hard to
set up to be really usable without extensive personal support from the maintainers.

A clear winner in terms of additional functionality is AbsInt, which provides tools like a
syntax-aware editor for annotations including a wizard for easily adding annotation lines,
and an interactive callgraph viewer. The other tools have static output which may be
viewed, but cannot be interacted upon.

OTAWA’s concept of integrating into a development environment also seems to be a
good idea, but the implementation is evidently not stable enough to be used in an actual
project. However, it should be mentioned that OTAWA’s approach to calculate a WCET
with a GUI utilizes more direct user interaction than AbsInt does: While AbsInt does tell
the user when annotations or configuration parameters are missing, it is up to the user to
navigate to the right panel in the GUI and do the needed configuration. OTAWA, on the
other hand, asks the user on the fly for loop bounds or branch destinations. While this
approach may be simpler for the user, it also has drawbacks, like not being able to set a
loop boundary dependent on the calling context. A GUI which provides such features in
an OTAWA way might easily be a lot more complex.

4.4 Conclusion

It comes as little surprise that the two commercial solutions come out as the "winners" of
this study focusing on usability and analysis features. oRange came up as a surprising
match in capabilities, sometimes even outperforming both AbsInt and Bound-T. Unfortu-
nately, it is held back by the complete lack of integration with the oipet utility - incompatible
not only in syntax, but in features, which is odd for two tools that are supposed to make
up a suite. We can only recommend the OTAWA maintainers to further work on bringing
both tools up to par.

We were also able to track down a case of WCET underestimation in oipet, caused by
misjudging a function call for a simple branch and thus declaring the program terminated
too early. Doing so without any visible warning to the user is in our opinion unacceptable
for professional usage, and we hope that this particular issue will be fixed soon.

METAMOC sounds like a promising approach, but is currently still too immature to really

31

stand the test.

Since WCA is only working with the JOP enviroment and only possesses some basic
features and a simple annotation syntax, it is of little use in analysing C programms and
can therefore not be compared with the rest of the evaluated tools.

TuBound shows an interesting concept of a combined analysis and compilation toolchain
acting directly on source code, but could unfortunately not be examined in detail.

5 Acknowledgements

We would like to thank the following people and organisations for granting us licences for
their products and supporting us in using them:

Simon Wegener and Martin Sicks
AbsInt Angewandte Informatik GmbH
D-66123 Saarbrücken
Germany

Christine Rochange and Hugues Cassé
Institut de recherche en informatique de Toulouse
Université Paul Sabatier 3
118 Route de Narbonne
F-31062 Toulouse Cedex 4
France

Jakob Zwirchmayr
Technische Universität Wien
Institut für Computersprachen E-185
Argentinierstr. 8/4/E-185.1
A-1040 Vienna
Austria

Niklas Holsti
Tidorum Ltd
Tiirasaarentie 32
FI-00200 Helsinki
Finland

Mads Christian Olesen
Aalborg University
Department of Computer Science
Selma Lagerlöfs Vej 300
DK-9220 Aalborg East
Denmark

Martin Schoeberl
JOP.design Java Processor Systems
Strausseng. 2-10/2/55
A-1050 Vienna
Austria

32

A Microbenchmarks

In this section, all microbenchmarks we used to determine the capabilities of every tool
under test are listed.

A.1 Constant Loops

These are the basic benchmarks checking whether loop bound detection is done at all.
The second test would unveil an implementation that just supports very basic patterns.

int main(void) {
int sum = 0;
int i;
for (i=0; i<10; i++)

sum++;
return sum;

}

Listing 1: constant-loop1.c

Expected result: Loop bound = 10

int main(void) {
int sum = 0;
int i;
for (i=4; i<13; i+=3)

sum++;
return sum;

}

Listing 2: constant-loop2.c

Expected result: Loop bound = 3

A.2 Infinite Loops

With these tests we analyse how an infinite loop is handled. The third test actually is a
finite loop and is used to test whether the tool recognized this fact (most tools did not).

/* Obvious infinite loop. */

int main(void) {
return no_return();

}

int no_return(void) {
while (1);
return 1;

}

Listing 3: infinite-loop1.c

Expected result: Infinite loop detected

33

/* Non-obvious infinite loop. Tools should at least not crash. */

int main(void) {
return no_return();

}

int no_return(void) {
int x = 21;
while (x > 0) {

x /= 2;
x++;
if (x > 42) break;

}
return x;

}

Listing 4: infinite-loop2.c

Expected result: Infinite loop detected

/* Non-obvious finite loop. Tools should return a maximum loop count of
5. */

int main(void) {
return no_return();

}

int no_return(void) {
int x = 21;
while (x > 0) {

x /= 2;
if (x > 42) break;

}
return x;

}

Listing 5: infinite-loop3.c

Expected result: Loop bound = 5

34

A.3 Branches

The branches tests include conditional branches which are never executed and thus
should not affect the WCET calculation. We can determine which branches are con-
sidered to be executed by the tool by looking at the boundaries the tools give for the
loops in the code.

/* Simple branches test. "is_never_called" should have 0 executions. */

int main(void) {
int i;
if(1){

i = test_passed();
i++;
return i;

}
else {

i = is_never_called();
i++;
i /= 2;
return i;

}
}

int test_passed(void) {
return 1;

}

int is_never_called(void) {
return 42;

}

Listing 6: branches1.c

Expected result: One call to test_passed, no call to is_never_called

35

/* Branch test 2: Test whether tool can ’follow’ static condition
variable.

int_loop should have 0 executions. */

int main(void) {
int x = 42;
if (x < 10)

x = 1;
else

x = 0;

if(x)
return int_loop(42);

else
return test_passed();

}

int test_passed(void) {
return 1;

}

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

Listing 7: branches2.c

Expected result: One call to test_passed, no call to int_loop

36

/* Check whether tool can follow static expression through a function
call.
Functionally equivalent to branches2, int_loop should not be called.

*/

int main(void) {
if(if_smaller_10(42))

return int_loop(42);
else

return test_passed();
}

int test_passed(void) {
return 1;

}

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

int if_smaller_10(int x) {
if(x < 10)

return 1;
else

return 0;
}

Listing 8: branches3.c

Expected result: One call to test_passed, no call to int_loop

37

/* Test whether tool can evaluate switch statically.
int_loop should not be called. */

int main(void) {
int i = 42;
int x = 0;
i /= 2;
i -= 15;
switch (i) {

case 1: x = int_loop(10);
case 2: x += int_loop(20);
case 3: x += int_loop(30);
case 4: x += int_loop(10);
case 5: x += int_loop(10);
default: break;

}
return x;

}

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

Listing 9: branches4.c

Expected result: No call to int_loop, small WCET

38

/* Test whether tool can follow if expression through two function
calls. */

int main(void) {
if(if_smaller_10(2))

return test_passed();
else

return int_loop(100);
}

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

int test_passed(void) {
return 1;

}

int if_smaller_10(int x) {
if(x < 10)

return int_loop(1);
else

return int_loop(0);
}

Listing 10: branches5.c

Expected result: One call to test_passed, exactly one call to int_loop, WCET < 200

39

A.4 Calling Contexts

These benchmarks test the capabilities of the tool to differentiate loop boundaries by
calling contexts.

int main(void) {
int arr[] = {1,2,3,4,5,6,42,10,13,10};
some_method(arr, 5, 42);
return some_method(arr, 10, 42);

}

int some_method(int arr[], int search_to, int search_for) {
int i;
for(i=0; i<search_to; i++)

if(arr[i] == search_for)
return i;

return -1;
}

Listing 11: simple-method-loop1.c

Expected result: Two calls to some_method with differing WCETs reported. A loop
bound of 7 for the second call deserves special mention.

int main(void) {
int arr[] = {1,2,3,4,5,6,42,10,13,10};
int search_to = 5;
some_method(arr, search_to, 42);
return some_method(arr, search_to*2, 42);

}

int some_method(int arr[], int search_to, int search_for) {
int i;
for(i=0; i<search_to; i++)

if(arr[i] == search_for)
return i;

return -1;
}

Listing 12: simple-method-loop2.c

Expected result: Same as previous

40

A.5 Jumptables

These benchmarks test whether the tool can resolve a call to a function pointer by itself
if it can be statically determined.

/* Simple call from a jump table. */

typedef int(*int_func)(void);

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

int one(void) {
return int_loop(100);

}

int two(void) {
return int_loop(200);

}

int three(void) {
return int_loop(300);

}

int four(void) {
return int_loop(400);

}

int five(void) {
return int_loop(500);

}

int main(void) {
int_func functions[] = {*one, *two, *three, *four, *five};
return functions[2]() / 10;

}

Listing 13: jumptables1.c

Expected result: Call is resolved automatically

41

/* Non-predictable call from a jump table. */

typedef int(*int_func)(void);

int int_loop(int x) {
int y = 0;
while(x) {

x--;
y++;

}

return y;
}

int one(void) {
return int_loop(100);

}

int two(void) {
return int_loop(200);

}

int three(void) {
return int_loop(300);

}

int four(void) {
return int_loop(400);

}

int five(void) {
return int_loop(500);

}

int main(int argc, char *argv[]) {
int_func functions[] = {*one, *two, *three, *four, *five};
return functions[argc]() / 10;

}

Listing 14: jumptables2.c

Expected result: A tool could analyse all possible candidates and report the highest
value; however, none did this automatically.

42

A.6 Recursion

Here we test how the tools handles recursion.

int main(void){
return fib(10);

}

int fib(int x) {
if(x < 2)

return x;
return fib(x-1) + fib(x-2);

}

Listing 15: recursion.c

Expected result: Tool is able to calculate a WCET.

43

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Wolfgang Fellger, Sebastian Gepperth, Felix Krause)

	Introduction
	Basics
	Goals of this study
	Participating tools
	aiT
	Bound-T
	METAMOC
	OTAWA
	TuBound
	WCA

	System configuration

	How we evaluate
	Usability
	Analysis Features
	Annotation Capabilities
	Papabench WCET results

	Test details
	aiT
	Usability
	Analysis Features
	Annotation Capabilities
	Papabench WCET results

	Bound-T
	Usability
	Analysis Features
	Annotation Capabilities
	PapaBench WCET results

	METAMOC
	Usability
	Analysis Features
	Annotation Capabilities
	Papabench WCET results

	OTAWA
	Usability
	Analysis Features
	Annotation Capabilities
	Papabench WCET results

	TuBound
	Usability

	WCA
	Usability
	Analysis Features
	Annotation Capabilities
	Papabench WCET results

	Comparisons and results
	Feature Comparison
	Detailed WCET results
	Usability
	Conclusion

	Acknowledgements
	Microbenchmarks
	Constant Loops
	Infinite Loops
	Branches
	Calling Contexts
	Jumptables
	Recursion

