
Static WCET Analysis of Task-Oriented Code for

Construction Vehicles

Master’s Thesis
Daniel Sehlberg

Dept. of Computer Science and Electronics
Mälardalen University, Väster̊as, Sweden

September 30, 2005

Abstract

When creating real time systems for embedded vehicle computers it is important
to know how they will behave during the worst possible scenario. To know each
task’s WCET (Worst Case Execution Time) is a prerequisite for being able to
know if their deadlines always will be met. A missed deadline in a real time
system can lead to severe consequences.

Volvo CE is using the Rubus real time operating system for their vehicles.
Before Rubus is creating the task schedule, the user has to specify the period
time, offset time and WCET for each task. The estimated WCET for each task
is today based on measures from automatic tests or by experiences. However,
it can not be guaranteed that these automatic tests have found the longest
possible path through each task. This can result in a too low estimate of the
WCET, which means that the behaviour of the system is unreliable.

This thesis investigates if WCET analysis tool aiT can be used to find safe
WCET estimates for the tasks in Volvo CE’s applications, and how much user
input is needed to get the result. Analysis results from aiT are compared to
measured results and the WCET estimates used today.

We have found that the times set in Rubus are in many cases greatly over-
estimated, and that Volvo CE would have good use of analyzing the tasks with
aiT in order to get tighter WCETs. By giving annotations for the tool, the
WCET estimates can become even tighter, but this also requires some manual
work.

Acknowledgements

The work on this thesis was made at the department of electronic product
development (TUE) at Volvo CE in Eskilstuna between March and August
2005. This is the final part of my education towards a Master of Science degree
in Computer Science at Mälardalen University.

I would like to thank my mentor Björn Lisper and his colleague Andreas
Ermedahl at Mälardalen University. Björn has constantly answered my ques-
tions and steered me in the right direction while Andreas has also been there
to answer questions and coming up with ideas. It should also be mentioned
that Björn and Andreas were the ones that initiated this project together with
Kurt-Lennart Lundbäck at Arcticus Systems.

I would also like to thank everybody at Volvo CE who helped me in any
way, especially Jesper Åström, Robert Larsson, and my second mentor Nils-
Erik B̊ankestad. Jesper was the application expert and helped me choose the
functions to analyze. He also taught me how to use the debug environment.
Robert gave me an introduction to Rubus and answered any questions about
the platform that I had. Nils-Erik checked up with me daily with questions,
answers and ideas. Andreas C Johansson and Robert Eriksson also deserves to
be mentioned because of their help with setting up the emulator and getting it
started, which was easier said than done.

Ola Eriksson, who was a couple of months ahead of me with his thesis, was
kind enough to give me hints on working with aiT and we interchanged some
thoughts and ideas about the tool.

Martin Sicks at AbsInt Angewandte Informatik has been showing a great
deal of expertise. He has had very good answers to all my questions about aiT,
and has spent much time helping me.

1

Contents

1 Introduction 4
1.1 Thesis Outline . 5
1.2 Volvo CE . 5
1.3 Real Time Systems . 6

1.3.1 Time-Triggered Tasks . 6
1.3.2 Event-Triggered Tasks . 6
1.3.3 Scheduling Paradigms . 7
1.3.4 Hard and Soft . 7

1.4 WCET Analysis . 7
1.4.1 Dynamic Methods . 7
1.4.2 Static Methods . 7
1.4.3 Differences Between the Methods 8

1.5 Tools for WCET Analysis . 8
1.6 Related Work . 9

2 Problem Description and Method 11
2.1 Comparing WCET Estimates . 12

3 Project Setup 13
3.1 Infineon C167CS . 13

3.1.1 Pipeline . 13
3.2 Rubus . 15

3.2.1 Rubus VS . 15
3.3 aiT . 15

3.3.1 Assembler . 17
3.3.2 Annotations . 17
3.3.3 Report File . 22
3.3.4 aiSee . 23

3.4 Trace32Fire . 26

4 Analysis Results 27
4.1 User Interaction . 27
4.2 Complexity . 28
4.3 Code Properties . 30
4.4 WCET Comparisons . 31

4.4.1 A Look at the Numbers 32

2

4.4.2 Another Way of Comparing 34
4.5 Work Time . 36
4.6 Batch Jobs . 36

5 Conclusions 39

6 Future Work 41

3

Chapter 1

Introduction

Most computers today are embedded as parts of a large variety of products,
for example telephones, toys, airplanes and cars. Real time systems, which are
common in vehicle computers, are systems where not only the computed result
is of interest, but also at what time the result is delivered. Tasks in real time
systems often have deadlines, and if those deadlines are not met it can have
catastrophical effects. It could cause an airplane to malfunction or the airbag
in a car to inflate too late or too soon. It is very important that these systems
are predictable and products with unreliable behaviour should not be delivered
from the developers.

One way to know if a task will be able to finish before its deadline is to know
the WCET (Worst Case Execution Time) of the tasks in the system. The most
common way to find WCET estimates today is to measure its execution time
with a number of different inputs. A big problem with this approach is that with
larger tasks it is very hard to know if the worst possible combination of inputs
has been used. Another way of finding WCET estimates is to use something
called static analysis, which relies on abstract models of the real systems.

AiT is a tool for static WCET analysis, created by German company AbsInt
[1]. The tool makes an analysis of the binary file in order to find the longest
possible path through a chosen code segment. After the analysis, aiT displays
a combined call graph and flow graph with WCETs for each basic block, each
routine, and for the whole segment.

The platform for Volvo CE’s software applications is Rubus Operating Sys-
tem (hereafter Rubus OS), created by Arcticus Systems [2]. Rubus OS maintains
real time tasks of different kinds. Time-triggered tasks that run periodically, in-
terrupts, or low-priority, event-triggered tasks that run in the background.

This project was a collaboration between Mälardalen University [3], Arcti-
cus Systems [2], and Volvo Construction Equipment (hereafter Volvo) [4]. The
purpose was to evaluate if aiT could be of use for the time-triggered tasks in
Volvo’s articulated haulers. The tasks are written in plain C code with many if-
statements, some loops, and no dynamic memory handling. Interesting aspects
of this evaluation were how well the code at Volvo CE suited aiT and how much
manual work was needed in order to get good results from the tool. The values
from aiT was also compared to measured values.

4

1.1 Thesis Outline

This chapter will continue by introducing the reader to Volvo CE, real time
systems and WCET analysis. The final section in this chapter will recommend
some articles, theses and dissertations within the same area of research for any
readers who wish to read more.

The second chapter will state the objectives of this thesis in detail, and
describe methods on how to reach the results.

In the third chapter, the reader will be introduced to hardware and software
used in this project. This includes information about the CPU (Central Pro-
cessing Unit) and its pipeline, the CPU emulator, the operating system, and
most importantly, the aiT WCET analysis tool.

In the fourth chapter, results are presented and analyzed. This chapter con-
tains many graphs and tables used to draw conclusions for patterns between
code sizes, call depths, loops, execution time etc. We will see if the Volvo CE
code was well suited for static WCET analysis, how much user interaction was
needed to get results and how good the results were.

The fifth chapter will sum up the conclusions, and chapter six will propose
some future work within the area of WCET analysis.

1.2 Volvo CE

Volvo Construction Equipment (CE) is one of the world’s leading manufacturers
of construction equipment. Their product range encompasses backhoe loaders,
wheel loaders (WLO), excavators, articulated haulers (ART) and motor graders
(VMG).

In Eskilstuna, Sweden, where this project was performed, Volvo CE has their
main office and development of engines, electronics, axles and transmission for
WLO, ART and VMG.

The number of computers in the different vehicles varies, but an articulated
hauler contains five computers or, to be more precise, five ECUs (Electronic
Control Units).

• Cabin ECU

• Engine ECU

• Instrument ECU

• Transmission ECU

• Vehicle ECU

These computers are connected with two CAN (Controller Area Network)
buses and one J1587 bus. The CAN buses are the primary buses used for most
of the data exchange, while the slower J1587 bus is mainly used for diagnostic
service tools. This thesis treats thirteen tasks in the Transmission ECU for
articulated haulers.

5

Figure 1.1: Motor graders, wheel loaders, excavators and articulated haulers are
some of the products developed by Volvo CE.

1.3 Real Time Systems

A real time system is a computer system where not only the results are impor-
tant, but also the time at which they are delivered. Usually, real time systems
consist of many tasks. A task can consist of one or more functions, but usually
does not concern itself with more than one assignment. For example, one task
can control oil temperature while another task has the assignment to change
gears. The tasks can be time-triggered or event-triggered.

1.3.1 Time-Triggered Tasks

Time-triggered tasks usually have a period time, a release time, a WCET and a
deadline as attributes. In many cases, the release time for a task is the beginning
of its period and the deadline is the end of its period. Even though many tasks
may have the same release time, it does not mean that they execute at the same
time. A scheduler is used to decide which task is executing when, i.e. it creates
the task schedule. For every new period the schedule starts over.

Period 1 Period 2

Time

Figure 1.2: A task schedule with six tasks named A-F.

1.3.2 Event-Triggered Tasks

Event-triggered tasks can wait for some spare time in the schedule before run-
ning or, if it is a critical task, it can preempt1 the task currently running.
Examples of their attributes can be priority or stack size.

1preempt = to take the place of; displace (source: www.dictionary.com)

6

1.3.3 Scheduling Paradigms

The scheduler uses some paradigm in order to decide which tasks have higher
priority than the others. In some systems, each task simply has an attribute
called priority, and in other systems the task with the shortest period might
be the task to run first. The latter paradigm is called Rate Monotonic (RM)
and is commonly used. A more flexible paradigm is where the task closest to
its deadline runs with the highest priority and this task might even preempt
another task already running. This is called Earliest Deadline First (EDF).

1.3.4 Hard and Soft

There are two kinds of real time systems: hard and soft. In a hard real time
system, it is very important to know the WCET of a task so that it can be
guaranteed to meet its deadline. A missed deadline for a hard real time task
can have fatal consequences, like for example if an airbag does not inflate at
the correct time. Soft real time systems are those that do not cause big danger
if malfunctioning, i.e. their deadlines are not as important to meet.

1.4 WCET Analysis

When constructing a real time system, some method of finding out the WCET
for the tasks must be used. It is not unusual that the WCET estimate is just
based on experience from earlier measurements, but with a large overapproxi-
mation added. These overestimations can be of a magnitude many times larger
than the real WCET of the task and as long as there is room for all tasks in the
schedule this is not a problem. If the schedule is getting full and the developers
wants to add more tasks however, it is of interest to have tighter WCETs.

1.4.1 Dynamic Methods

Other methods include measuring the time for a number of different scenarios or
calculate the times according to models. By measuring the time, a so called dy-
namic method is used. Common tools for measuring times are logical analyzers,
oscilloscopes or some clock supplied by the OS. Many different measurements
have to be done on many different inputs. The highest time measured might
be the actual WCET, but unless all possible combination of inputs have been
measured, there is no guarantee that the actual WCET have been found. When
using this method, a safety margin is often added to the measured WCET.

1.4.2 Static Methods

The opposite of the dynamic methods are static methods. They rely on models
of the CPU and might be a better choice to get a safe WCET estimate. When
using a static method, the goal is to find the longest possible path through
the task. If the models are correct, the time it takes to execute that path is
definitely a safe WCET estimate, i.e. a value larger than or equal to the actual

7

WCET. The drawback with these methods is that they might find a path that
is practically infeasible, and therefore produces an overestimation.

1.4.3 Differences Between the Methods

As Figure 1.3 shows, the measured values are less than or equal to the actual
WCET assuming that there is no overhead in the measurements. The analyzed
values are more than or equal to the actual WCET. If reliable dynamic and
static methods would produce the same result, the actual WCET would be
found.

Pr
ob

ab
ili

ty

Time

Measured execution times Execution time
from static WCET
analysis

Actual WCET

Figure 1.3: Results from dynamic methods are always lower or equal to the
actual WCET, while results from static methods always are higher or equal.

1.5 Tools for WCET Analysis

Developed by German company AbsInt [1], aiT is the only commercial tool that
has support for Motorola and Infineon processors. We will get more into detail
about aiT later2 since this is the tool used in this project. Except for aiT, there
are a few other tools on the commercial market. Even though the biggest com-
mercial tools, aiT and Bound-T, uses different types of static analysis methods
and could therefore be rivals, they are also supporting different processors. This
makes it an easy choice for which tool to use.

Bound-T is a WCET tool from Finish company Tidorum Ltd [5]. It was
started as a project for the Europan Space Agency, and was then further devel-
oped by Space Systems Finland. Bound-T supports ERC32/SPARC V7, Hitachi

2aiT is treated in Section 3.3.

8

H8/300, ADSP-21020, and some processors from the Intel-8051 series. The tool
is source code independent.

WCET tools still in the research stage are for example Heptane (Hades Em-
bedded Processor Timing ANalyzEr) [6], which is published under the GNU
GPL licence and downloadable for free at the website. It has support for Pen-
tium I, MIPS and Hitachi H8/300.

Another prototype WCET tool is SWEET (SWEdish Execution time Tool),
presented by Andreas Ermedahl, Jan Gustafsson, Björn Lisper and Christer
Sandberg from Mälardalen University [7, 8, 9]. Today, their research concerns
flow analysis on intermediate code in order to be platform-independent. The
tool is divided into modules, so that it will be easy to change separate parts of
the analysis. Supported processors are ARM9 and NEC V850E.

1.6 Related Work

In February 2003, Toni Riutta and Kaj Hänninen wrote their masters thesis
entitled Optimal Design [10] at Volvo CE. The main objective was to find out if
some of the hard offline scheduled tasks could be changed to soft online sched-
uled tasks. This report treats the development process at TUE and gives an
introduction to Rubus. The main part is a huge literature study that discusses
many articles about how to optimize the CPU utilization for a real time sys-
tem. Their presented solution is a weakly hard real time system with some
modifications.

Daniel Sandell evaluated in his masters thesis [11] how well suited the OSE
operating system code was for static WCET analysis with aiT. System calls and
interrupts were analyzed and compared to results from an ARM CPU emulator
called ARMulator. This thesis gives a very good introduction to flow analysis,
pipeline analysis and low-level analysis. He finds that the interrupts are well
suited for static analysis and that the system calls also can be analyzed, but
with a little more manual work. A shorter report on this project was also written
[12].

Another student who has used aiT is Susanna Byhlin who wrote her masters
thesis [13] at Volcano Communications Technologies AB. The objective was to
evaluate if Volcano could save time and money by integrating static WCET
analysis into their current tool chain. Her report gives good introductions to
CAN and LIN (Local Interconnect Network). The conclusions were that most
of the workload was to find loop bounds, and that aiT would be well suited for
Volcano. This project is also documented by a shorter report [14].

Ola Eriksson and Yina Zhang were working on their masters theses at CC
Systems [15] almost during the same time period as this project was performed
at Volvo CE. They both analyzed the same code snippets, but Ola used static
analysis with aiT [16] while Yina performed dynamic analysis with oscilloscopes
and logical analysers [17]. Their conclusions are that the oscilloscope is not
a suitable instrument for WCET analysis, but a combination of aiT and a
logical analyzer would be optimal. Ola proposes that a person performing static
analysis should have very good knowledge of the code or at least good contact

9

with the one who has written it.
For deeper information about static WCET analysis, Stephan Thesing has

written a doctor’s dissertation about modelling hardware [18]. The emphasis
on the dissertation lies within abstract interpretation and pipeline models. He
cooperated with people at AbsInt, the company behind aiT, and Airbus France
during his work.

Another deep look into static WCET analysis can be found in Andreas Er-
medahl’s dissertation [7]. He proposes that the analysis is divided into modules
with well-defined interfaces along with calculation methods and execution rep-
resentation. Written in 2003, this was the beginning to the research WCET tool
SWEET.

10

Chapter 2

Problem Description and
Method

The objectives of this project were as follows:

• Evaluate how well suited the Volvo CE code is for static WCET analysis

• Investigate how much user interaction is needed when using aiT

• Investigate how exact the aiT results are

• Compare aiT results with WCET estimations used today

• Compare complexity and size properties of the code to WCET estimations
and workload

• Investigate the use of batch jobs

The project started by analyzing some simple tasks and then proceeded with
more complex tasks. The first step for every task was to analyze it with as few
annotations1 as possible. After that, the aiSee2 graph was used to determine if
aiT has chosen paths that are practically infeasible. If this was the case, these
paths was excluded from the next analysis by giving manual annotations. Then
the input arguments used to produce the WCET path was determined and used
for doing a measurement in a hardware environment. It was of interest to see
if the measurements would match the analysis results, and also how much the
first analysis results (using as few annotations as possible) differed from the
final analysis result.

During this whole process, notes was taken on how much labor that was
needed to produce the first results as well as the final results. Different mea-
sures of size and complexity of the tasks were looked into trying to find some
patterns between complexity and the number of annotations as well as between
complexity and WCET.

The final part of this project was to see how command-line runs of aiT could
be of use for running batch jobs.

1Annotations are instructions for aiT, written by the user. More about them in Section
3.3.2.

2AiSee is AbsInt’s graph viewer. More about aiSee in Section 3.3.4.

11

2.1 Comparing WCET Estimates

As mentioned above, when all annotations were done, the input arguments that
produced that path were determined by studying the graph. These arguments
were then used in the hardware environment when running the same function.
The Trace32Fire emulator was used as hardware since a run can not be traced
on the real CPU. Trace32Fire provides tools for measuring the execution time
of the run.

The scheduler in Rubus needs an approximation of the WCET in order to be
able to schedule the system. Volvo has measured them with Rubus’ own timer
during automatic testing and then added a large margin to be sure to have safe
WCET estimates. The times provided by aiT, with and without annotations,
were compared to the times measured in the emulator and the WCET estimate
given to Rubus.

If the measured time happens to exceed the aiT time, it means that the
WCET estimate given by aiT is not safe. If the Rubus WCET is lower than the
measured, it is an indication that Volvo might have assumed a too low WCET.
However, it does not necessarily mean that the system can crash, because the
measured value can represent a combination of inputs that never are possible
during a regular run of the system. We can for example provoke heating of oil
that is in critical need of cooling even though the system never would have let
the oil reach such a high temperature in real life.

12

Chapter 3

Project Setup

This chapter will introduce the hardware and software used during this project.
We will begin by looking at the CPU and try to understand how a pipeline
works. Then we will look at the real time operating system and its accompanying
development tool. Section 3.3 will give a description of aiT. Finally, we will take
a quick look at the Trace32Fire emulator.

3.1 Infineon C167CS

We have been working with a project that uses Infineon C167CS [19]. This is
a 16-bit, single-chip microcontroller with a four stage pipeline. The memory
space of the C167CS is configured as a Von Neumann architecture. That means
that code memory, data memory, registers and I/O ports are organized within
the same linear address space which in this case covers up to 16 Megabytes.

CPUs in embedded systems are used for simpler purposes than those for a
PC. They are usually simpler and do not have the same processing power. For
example, this processor has a frequency of 33 MHz, and the processor in a PC
today has about 3 GHz.

3.1.1 Pipeline

Figure 3.1: This picture shows three instructions executed without a pipeline.
In this case, the CPU finishes each whole instruction before starting with the
next.

13

Pipelining instructions can be compared to manufacturing parts on an as-
sembly line [20]. The purpose in both cases is to keep every stage of the process
as busy as possible. Assume, for example, a factory that is cutting, drilling,
polishing and packaging a product, it might be a good idea for them to use four
stations for these processes. In that case, the station cutting the product does
not have to wait for each product to be packaged before starting to cut the next.
The more stages, the less has to be done at each stage and the more can be
done at the same time. However, there is also a bigger chance of dependencies
between the stages.

Pipelining is used to speed up the CPU by overlapping different execution
stages of instructions [11]. Under ideal conditions, a pipeline can perform a
speedup equal to the number of stages, but resource and instruction dependen-
cies usually cause a lower speedup. For example, instructions can have to wait
for data that is not yet produced by an earlier instruction, or some instruction
can need more than one cycle in some stage, which causes the next instruction
to be stalled until that stage of the pipeline is available. The pipeline of the
Infineon C167CS has four stages. These are:

Figure 3.2: The same instructions executed in a pipelined CPU. Note that the
third instruction is stalled in the decoding stage for one cycle because the second
instruction takes two cycles in the execution stage.

1. Fetch
The instruction to be executed is fetched from internal ROM (Read-Only
Memory), internal RAM (Random Access Memory), or external memory.

2. Decode
The instruction is decoded and, if necessary, operand addresses are calcu-
lated and respective operands are fetched. The stack pointer (SP) register
can be decremented or incremented. For branch instructions the instruc-
tion pointer and code segment pointer can be updated.

3. Execute
The operation is performed on the fetched operands. Auto-increment or
auto-decrement writes used as indirect address pointers are also per-
formed.

4. Write back
External operands and remaining internal operands are written back to a
specified location.

14

If comparing Figure 3.1 and Figure 3.2, it shows that the effectiveness is
greatly improved if a pipeline is used.

3.2 Rubus

The platform for the vehicle systems at Volvo is the Rubus real time operating
system, which is created by the Swedish company Arcticus Systems [2]. Rubus
OS implements three types of tasks called green, red and blue. Green tasks are
interrupts. They have the highest priority and preempt any other tasks when
released. Red tasks are hard real time tasks triggered by the system clock and
scheduled offline. Possible attributes for the red tasks are release time, period
time, deadline, precedence and WCET. Blue tasks are event-triggered soft tasks
which are scheduled online and only executes when there are no red or green
tasks running. They are scheduled firstly according to a priority attribute and
secondly by the First-In-First-Out paradigm. The other attribute for blue tasks
is stack size. Since preemption is very rare between the red tasks, they share
the same stack. The blue tasks allocate their own stacks.

Priority Name in Rubus Type of tasks
High Green Interrupts
Medium Red Time-triggered hard tasks
Low Blue Event-triggered soft tasks

The Rubus OS supports different modes1 that can have different schedules.
When switching mode, the schedule is also switched.

3.2.1 Rubus VS

Rubus Visual Studio (VS) is a graphical development tool used when creating
or editing the system. The user can easily create components and connect them
with ports and communication paths.

3.3 aiT

The German company AbsInt [1] has, apart from cache analyzers, stack analyz-
ers etc., created a static WCET analysis tool called aiT. The tool was created
as part of the DAEDALUS project and by specifications from Airbus France.

The tool supports Texas Intruments TMS320C33, ARM7, HCS12/STAR12,
PowerPC MPC555, PowerPC MPC565, PowerPC MPC755, ColdFire MCF5307,
Infineon C167CS-LM, ST10F269 and ST10F276. In this study, Infineon C167CS
was the CPU used. The company has sold its product to Airbus France, Bosch,
DaimlerChrysler and Ford to mention a few. They were awarded the European
IST award in 2004.

1Startup mode, drive mode, shutdown mode etc.

15

The analysis is done on a binary file in the IEEE-695 format (.abs), which in
this project was created by the Tasking C166/ST10 compiler. WCET determi-
nation consists of several analysis phases. First, the binary is read, then the loop
bound analysis tries to determine bounds on the number of loop iterations, the
value analysis tries to statically determine register values, the pipeline analysis
computes WCETs of the basic blocks, and the path analysis derive an overall
WCET based on the block WCETs. The pipeline analysis might also be called
low-level analysis. If no errors were encountered during these analysis phases, a
combined call graph and flow graph is constructed and opened in aiSee where
it can be interactively explored.

Figure 3.3 shows the aiT workspace. In the upper left window, it is declared
which binary to analyze, which program point to start the analysis at, which
annotation file2 to read, where to save the report file3, and where to save the
graph file4. The window below displays info, warnings and errors during the
analysis. The window to the right is the disassembly window, which displays
the entire assembler code analysed. Inclusion of source code in the disassembly
window is optional.

Figure 3.3: The aiT workspace. The annotation file is referred to as AIS file
and the graph file is referred to as GLD file. These letters are the respective file
extensions.

2More about annotations in chapter 3.3.2
3More about report files in chapter 3.3.3
4More about the generated graphs in chapter 3.3.4

16

3.3.1 Assembler

Since the analysis in aiT is made on the binary, it means that it operates on
the assembler instructions. These instructions are also presented to us when
viewing a flow graph or the code in the disassembly window. Luckily, there is
information in the binary specifying which rows in which source files that certain
instructions correspond to. AiT could therefore display the source code above
the corresponding assembler instructions. Sometimes however, the source code
can be erroneous or missing. This could be caused by either wrong information
in the binary or by faulty interpretation in aiT. Those times, some knowledge
of the assembler code can be of good help. Below are three rows of simple c
code and their corresponding seven rows of assembler code. This is how it looks
in the disassembly window.

x ++;
0x14:0xb106: mov r9, 0x3502
0x14:0xb10a: add r9, #1
0x14:0xb10c: mov 0x3502, r9

if (x > 49)
0x14:0xb110: cmp r9, #0x31
0x14:0xb114: jmpr cc_sle, 0xb11e <0x14:0xb11e>

x = 49;
0x14:0xb116: mov r12, #0x31
0x14:0xb11a: mov 0x3502, r12

Before each instruction, the page number (e.g. 0x14) and address (e.g.
0xb106) to that instruction is specified. The assembler instructions above are
read as:

1. write the value located at address 0x3502 to register 9

2. add 1 to the value of register 9

3. write back the value of register 9 to memory address 0x3502

4. compare the value in register 9 to hex number 31 (decimal number 49)

5. jump to instruction 0x14:0xb11e depending on above comparison

6. write hex number 31 (decimal number 49) to register 12

7. write the value of register 12 to memory address 0x3502

3.3.2 Annotations

In order to help aiT in many different ways, annotations can be written. These
can either be written in a specific annotation file or directly in the source
code. During this project, we have chosen to write them in the specific file. The

17

annotations brought up in this section are only the ones used in this project and
there are several other kinds of annotations in the aiT manual. The other types
of annotations can for example specify an ending point of the analysis, help
aiT with unresolved calls, specify for each instruction which memory address is
accessed, exclude parts from the analysis and set a maximum recursion depth.

There are two different groups of annotations - mandatory and optional.
The mandatory annotations are those needed to help aiT with, for example,
unresolved loops, while the optional annotations are used to tighten the result
from the analysis. Every annotation is started with a keyword and ended with
a semicolon. Comments in the annotation file are started with #.

Some of the annotation examples in this section are written in two different
ways. All program points can be described with either absolute or relative
addressing, and the closing paragraphs will describe the differences between
these two more in detail.

Compiler and Clock Rate

Since we in this project have used the Tasking C166 compiler and analyzed
tasks for a CPU with a clock rate of 33 MHz, the following annotations have
been used for every analysis:

clock exactly 33 MHz;
compiler "c166-tasking";

Loop Bounds

After running an analysis with only these two conditions, aiT might fail because
of unknown loop bounds. The error message looks like this:

pathan2: Warning: In "?\\loop.c":
In routine ’_main.L1’ at address 0x0:0x252:
Loop bound missing at start node.

lp_solve: This problem is unbounded
Execution of ’C:\Program Files\aiT_C166\bin\lp_solve’ failed

main.L1 in the warning represents the first loop in function main. If there
were more loops in the same function, the second one would be referred to as
routine main.L2 and so on. All functions and all loops are routines in aiT.

To help aiT with this problem, the user must manually find the maximum
loop bound to the first loop in function main. By clicking on the warning, aiT
opens up the source code and the line where the loop is located. Let us say for
example that the user find the maximum number of iterations in this loop to be
5, and that the comparison steering the loop is located at the beginning5. The
user can now write the annotation in two different ways, either using absolute
addressing or relative addressing:

5For-loops and while-loops have the comparison at the beginning. Do-while-loops have the
comparison at the end.

18

loop 0x0:0x252 max 5 begin;

or

loop "_main" + 1 loop max 5 begin;

Context Specification

Every routine is analyzed for each context it appears in, i.e. for every time it
is called from another routine. In a very complex system there can be a huge
amount of different contexts that increases the analysis time. If the user wants
to limit the number of contexts analyzed, an annotation can be written for that.
The annotation is called interproc and has two calculation methods - limited
and flexible. In order to activate the automatic loop bound detection the flexible
method must be chosen, hence the limited method is not discussed here.

interproc flexible;

The attribute max-length is what limits the length of the call strings6 for
each routine. A max length of 1 will result in a less specific result, but will also
shorten the analysis time a little. To analyze each context separately, an infinite
max length is used. The longer analysis time is definitely a worthy tradeoff for
the better precision, so we have in this project therefore used the infinite max
length.

interproc flexible, max-length = inf;

There are also attributes for specifying a maximum loop bound for the
automatic loop detection and a maximum recursion depth, but those are not
used in this thesis.

Memory Accesses and Known Register Values

It might happen that aiT is unsure of which memory address to access, and it
will therefore assume an access to the slowest possible memory. These accesses
can be seen in the report file as a totally unknown access to

phys([?])

or an access to somewhere within an interval, like for example

phys([0x100000..0x10ffff])

For these uncertain accesses, aiT can be helped in a couple of ways. Either
memory addresses can be defined, or accesses can be limited to certain address
spans. This can be done either for a whole task, or for each program point. An
annotation can look like this:

instruction "_main" + 1 write accesses 0x10cfd2 .. 0x10cfe6.

6A call string is a list of routines that are called before reaching the present routine.

19

Instead of declaring specific accesses, register values can be declared at some
suitable program point. The values for the registers can be fetched from the
debug environment by setting a breakpoint at a suitable line in the task and
reading the register values after stopping there. What we have done in this
project is to give aiT the values of some important registers as they are at the
entry point of the task.

instruction "_main" is entered with r12=0x4363, r13=0x0041;

In order to remove all uncertain accesses, aiT can be given the register
values or accesses can be declared for every instruction, but this is very time
demanding.

Conditions

The condition-annotation can be used to force a branch in one direction. If an
expression is supposed to be false even though aiT seems to choose the true-
path, aiT must be told which way to go. Take the following program snippet
as an example:

if (x == y) z = x;

The corresponding assembler code might look like this:

0x0:0x250: cmp r3, r4
0x0:0x252: jmpr cc_sgt, 0x256
0x0:0x254: mov r5, r3

The first instruction does a comparison between the content in register 3
(x) and register 4 (y). The second instruction is a branch that makes a jump to
address 0x256 if the comparison gets evaluated to be true. The third instruction
assigns the content in register 3 (x) to register 5 (z).

If we could guarantee that x and y never have the same values, and z should
not be assigned the value of x, the analysis of the branch should be forced to
jump over the assignment and land on the instruction after (0x256). The branch
must therefore be set to be always true. This can be written as:

condition 0x0:0x252 is always true;

or

condition "_main" + 2 branches is always true;

The second choice assumes that this snippet is located in the routine main
and that this is the second branch in that routine.

It is often the case with branches that if they look like they should be false
judging from the source code, the corresponding assembler condition should be
true and vice versa. Look at the assembler snippet above for example. All an-
notations concerning program points are written for the assembler instructions.
The source code is only there to help us understand the instructions.

20

Flow

If the user does not want to manually figure out to know which way to go in
a branch, aiT can choose the correct path if it is annotated which instructions
always execute together. Take the following code snippet as an example:

if(a == 1) {
b = 1;
d = 1;

}
else

b = 0;

if(a == 1)
c = 1;

else {
c = 0;
d = 0;

}

Are there some parts of this program that always are executed together?
Yes, for example the assignments of b=1 and c=1 or the assignments b=0 and
c=0.

AiT will choose the path that assigns b=1, d=1, c=0, d=0 since that is the
longest path, but since that is impossible, aiT needs information about that.
Assume that the assignment b=1 corresponds to instruction 0x0:0x1e40 and
that the assignment c=1 corresponds to instruction 0x0:0x1e52. It can then be
written:

flow each 0x0:0x1e40 / 0x0:0x1e52 is exactly 1;

This annotation means that if 0x0:0x1e40 is executed n number of times
during each run of this function, then so is 0x0:0x1e52. Now aiT will choose
either the path that assigns b=1, d=1, c=1 or the path that assigns b=0, c=0,
d=0. For this small segment, the predicted WCET has probably been shortened
with about 2 CPU cycles.

There are more ways to use this annotation, but this is the only way it is
used in this project. Another example is:

flow sum 0x0:0x1e40 / "_main" + 2 calls is max 4;

This means that the instruction at 0x0:0x1e40 will be executed at most four
times as many as the second call in routine main during all combined runs of
this routine. The flow annotations can only be used for two program points
within the same routine, so the only way that the annotation above would work
is if 0x0:0x1e40 is located in the routine main.

If the user would have been able to annotate two program points that are not
executed together, this type of annotation would have been even more useful.
Take the following code snippet:

21

if(a == 1) b = 1;

if(a == 0) b = 0;

The user sees that only one of these two assignments will be executed, but
the flow annotation can not be used to tell aiT. If there would have been an
else-statement to just one of these, the annotation could have been used in
order to say that the else-statement would be executed just as many times as
the other if-statement. What the user has to do here is to read the graph to see
if any of the assignments take more time than the other. Then the condition
annotation can be used for steering one of them.

For the simple examples used in this report, it is not much of a problem
to manually solve which path to choose. The real code can be much more
complicated with function calls, multiplication, division and more if-statements.
This is when the flow annotation really comes to good use.

Absolute Addressing

The easiest way to write an annotation is to use the address to the instruction
involved since these addresses are easily found in the flow graph or in possible
warnings. An absolute address looks like 0x0:0x252.

Relative Addressing

Relative addressing is a little more complicated to find and to write, but is
much more explaining than an absolute address. A relative address consists of
a name to the routine followed by +/- n parameters. The parameters can be, for
example, loops, calls, branches, writes, reads or instructions. Every parameter
type except loops can be combined. If, for example, the user wants to declare
that the condition in the third branch after the fourth call in routine main is
always false, it would look like this:

condition "_main" + 4 calls + 3 branches is always false;

AbsInt have constructed this annotation language so that it will be very
easy to understand what is written, and it even let the user choose between
singular and plural when declaring a number of parameters. For example, 3
branches have the same meaning as 3 branch.

If the project is rebuilt, an absolute address is most likely incorrect and
the instruction must therefore be relocated and the annotation rewritten. A
relative address might still be correct, but since the compiler can build the
project differently each time this is not a certainty.

3.3.3 Report File

The report file created by aiT contains detailed information about the whole
analysis. It mentions the analysis start time, which files are used, the addresses
of the memory pointers, loop bounds, memory addresses which are considered

22

read-only and memory accesses for each instruction. The memory accesses are
displayed like this:

instruction 0x12:0xaca4 writes to phys([0x10f73e]):2
instruction 0x12:0xaca8 reads from phys([0x10f73e]):2
instruction 0x12:0xacb0 [step 1/2] writes to phys([0xfbd6]):2
instruction 0x12:0xacb0 [step 2/2] writes to phys([0xfbd4]):2
instruction 0x12:0xacb6 reads from phys([0x10f73e]):2

For some instructions, aiT is unsure of what address to access and therefore
assumes the slowest possible access. This is usual for indirect accesses, i.e. use
of pointers. In some cases aiT knows at least in which memory interval to access
and then assumes the slowest possible access within that interval. The uncertain
accesses are displayed in two ways, either with an interval or with a question
mark.

instruction 0x13:0x3766 writes to phys([0x10cfd2..0x10cfe6]):2
instruction 0x13:0x378a reads from phys([?]):2

There are annotations to help aiT with these accesses, and many of them
could be helped by letting aiT know the values of some registers as they are
when entering the function. To specify each access means rather much work
though.

At the end of the report file the predicted WCET is shown for the whole
task and for each of the routines involved. This might look something like this:

Computed Worst-Case Execution Time: 8256 cycles = 0.250 ms

Predicted Worst-Case Execution Time Contribution(s):
_Task_Main_Function: 2559 cycles = 77.546 us
__mul: 3843 cycles = 0.117 ms
_FunctionA: 84 cycles = 2.546 us
_FunctionB: 0
_FunctionC: 0
_FunctionA.L1 (loop): 1764 cycles = 53.455 us
_FunctionB.L1 (loop): 0
_FunctionB.L2 (loop): 0

In this example, FunctionB and FunctionC are not parts of the WCET path,
hence their WCET contributions are 0 cycles.

3.3.4 aiSee

AiSee is the graph viewer from AbsInt. After all steps of the analysis are done,
aiSee draws the combined call graph and flow graph. When opened, only the
call graph is visible. Each function is displayed as a node in the graph, and all
loops are also presented as nodes. Red lines between nodes indicate the WCET
path. Above the graph, the total predicted WCET is displayed.

23

Figure 3.4: A simple call graph.

For every routine, there is a flow graph describing the execution flow through
it. When unfolding a routine, the flow graph will be visible. The base blocks7

in the routine will be represented as nodes in the flow graph. If chosen in the
aiT visualization settings, the source code will be displayed in these nodes. This
setting is recommended to turn on, otherwise it might be tough to understand
the flow graphs.

Below every basic block is a white box displaying two numbers. The first
number is the maximum number of times this path has been visited in one
context. Except for in loops, these numbers are 1 or 0 depending on if that
path is part of the WCET path or not. The second number represents the
maximum number of CPU cycles used for one context.

If a base block is unfolded, it will display every assembler instruction that
represent that base block. This is the lowest level graph in aiSee.

There are a number of features in this program. The list below mentions
some of the most used ones during this project. The quick commands for them
are displayed in the parentheses.

• zoom in (+)

• zoom out (-)

• maximum zoom to fit in window (m)

• redraw graph (g)

• fold routine or instruction (f)

• unfold routine or instruction (u)

• unfold routine or instruction into a box (x)

• unfold routine to the lowest level (y)

• unfold entire graph to the lowest level (z)
7A base block is a snippet of program code that always executes as whole (i.e. a snippet

without branches or calls).

24

• second info field (j)

• follow edge (e)

Figure 3.5: One routine unfolded to display a flow graph.

To view the WCET contribution of one specific routine, the routine can be
selected and j can be pressed on the keyboard. This is the quick command for
the second information field, which pops up as a layer on top of the routine. It
displays the predicted WCET contribution and a list of the contexts for which
this routine is analyzed. When used on instructions, this info field displays the
addresses to the instructions. There are also the first and the third information
fields available, but those have not been used at all during this thesis and are
therefore not described here.

25

3.4 Trace32Fire

Trace32Fire is an emulator from Lauterbach Datentechnik GmbH [21]. It has
full support for the whole C166 family, which includes the C167CS. The emu-
lator works just like the real CPU, but has the ability to log every instruction
along with register values and execution time. The trace can be folded or un-
folded into different levels. We have been looking mostly at level one and three.
The highest level displays only the source code while the third level displays
source code, assembler instructions and register values.

Figure 3.6: The trace window, unfolded to the third level.

A trace can also be viewed as a graph with each function name on one axis
and the running time on the other axis. By selecting two points on the graph,
the time difference between them is shown. Interrupts had been disabled, so
they did not cause a problem.

The first 12 tasks of this project were measured on the real hardware using
the Rubus clock, but since we could not trace the measured run we decided
to use the emulator instead. All these tasks were remeasured in the emulator,
and the differences between the old and new times were between 3.4 and 3.6
microseconds. We were able to establish this as the timing overhead in Rubus,
and that the times from the emulator are accurate.

26

Chapter 4

Analysis Results

In this chapter we will present and analyze the results from our aiT runs and
measurements. Section 4.1 describes how much user input that was needed, and
Section 4.2 investigates how well suited the code which had been selected was
for static WCET analysis. In Section 4.3 we make a comparison between the
initial aiT result, the tightened aiT result, the measured result and the WCET
set in Rubus.

When terms like ’analysis values’, ’analysis times’, or ’analysis results’ are
mentioned they refer to the WCET derived from aiT. Terms like ’measures’,
’measurement values’ etc. refer to WCET obtained from the CPU emulator.
When talking about large and small tasks, we refer to their aiT WCET.

Some abbreviations will be introduced for this chapter:

• WCET written in Rubus (Rub)

• The first aiT WCET, with as few annotations as possible (aiT1)

• The last aiT WCET, with as many annotations as possible (aiT2)

• Time measured in the emulator, with the same execution path as aiT2
(M)

4.1 User Interaction

AiT needed some inputs before we could get started, such as the CPU used,
XRAM settings, buscon settings and register settings. The XRAM settings and
the buscon settings was found in the initiation file for the system. The values
for the context pointer (CP), system stack pointer (SP), user stack pointer
(R0) and the four data pointers (DPP0-DPP3) might be different for each task.
To find these, we ran the project in the hardware environment and stopped at
breakpoints on the first row for every task that were going to be analyzed. When
the debugger had stopped, we could view the values of these registers. To make
sure they were constant for each task, we repeated this action approximately
ten times and watched the values every time.

Out of thirteen analyzed tasks, only three needed annotations before we
could get the first results. Finding the information for these annotations did not

27

cause much work, but on the other hand, the WCETs presented were in many
cases just theoretical values that would not be possible in the real environment.
Table 4.1 shows the number of annotations used. What we call the necessary
annotations are loop bounds that aiT did not manage to find automatically.
The so called possible annotations are used to exclude infeasible paths from the
analysis. Much more time was needed to find these.

Task Loops Necessary annotations Possible annotations
1 0 0 2
2 0 0 1
3 0 0 1
4 0 0 3
5 0 0 6
6 1 1 2
7 1 1 6
8 0 0 5
9 0 0 4
10 0 0 8
11 0 0 4
12 0 0 18
13 18 11 103

Table 4.1: The number of annotations written for each task.

After the annotations have been given, there was still a possibility to give
more annotations. There were still some uncertain memory accesses for almost
all of the tasks, but finding and annotating them would be very time consuming.

4.2 Complexity

Figure 4.1: The 20-node call graph for task 12.

Different tasks have different source code sizes, contain different number
of functions and have different call depths. These are some ways of measuring

28

Figure 4.2: The 115-node call graph for task 13.

complexity. The code size is the easiest to look up, but should also be considered
a rather bad measure of complexity since it can contain many comments that do
not affect the complexity at all or just very long symbol names. This could be
called the practical size of the task. To find a logical size using the source code,
we should count something that tell more about how much executable code
there is. One way would be to count everything but comment rows and blank
rows. What we get then should be the number of executable rows. Another way
can be to count the semicolons, since each statement in C ends with such.

By looking at the aiSee call graphs, we see that it is possible to count the
number of nodes1 and the call depth. This is a different complexity measure.

Table 4.2 shows a number of complexity measures for the tasks. The tasks
are ordered according to their WCET, so what is interesting here is to see if
there are any patterns in these complexity numbers.

Except for 4-5 tasks, the size of the source code, the number of executable
rows or the number of semicolons follow the same pattern as the WCET. Count-
ing the number of nodes in the aiSee graph, there are three tasks that do not
match the pattern, and there is only one task that differs when counting the
call levels. However, the number of nodes or number of call levels do not show
much indication of an incremention, so these could not be used to tell which
tasks have higher WCETs than others, except for the last two tasks that are
much larger in every aspect than the others.

We also looked up task sizes in the .map-file created by the compiler, but
we only found them for eleven of the thirteen tasks. The sizes found followed
the pattern of the source code sizes, and therefore they would not contribute
any more information. It was decided to leave them out.

In the big picture, all these complexity measures are some kind of indicator
for the WCET, but neither of them can be used to approximate the execution
time nor to compare WCET between tasks of fairly equal size.

Table 4.3 is sorted by the difference between aiT1 and aiT2, and we can
directly verify that there is no pattern at all between the complexity of the

1Nodes in aiSee represent all functions and loops involved in the analyzed segment.

29

Task
WCET
(aiT2)

Size of
source
code

Exec.
Rows

Semicolons
Nodes

in graph
Call
levels

1 4788 3,6 kb 55 11 1 1
2 5879 4,5 kb 56 17 1 1
3 12122 4,7 kb 58 21 3 2
4 13394 5,2 kb 72 18 1 1
5 22364 6,3 kb 86 35 2 2
6 27243 4,9 kb 43 11 6 3
7 29061 9,3 kb 123 70 5 3
8 30455 8,2 kb 119 55 5 3
9 36000 5,5 kb 49 23 5 3
10 55091 10,9 kb 195 83 3 3
11 70273 8,8 kb 188 73 5 3
12 143606 40,7 kb 707 360 20 5
13 1447000 565,0 kb 12765 4143 115 8

Table 4.2: WCET and complexity measures.

tasks and how much we were able to tighten the WCET estimate from the first
aiT result.

The time used by aiT to analyze the tasks was for all but one task between 2
and 6 minutes, but for the largest task the analysis times varied between 15 and
100 minutes depending on which annotations that were used. Apparently, and
not unexpected, flow-annotations increased the analysis time while condition-
annotations decreased the time.

4.3 Code Properties

The source code in this project is written in C. For the thirteen tasks analyzed,
the code structure is very simple with almost exclusively if-statements, just
a few loops, one nested loop, no recursion and no dynamic calls or memory
allocations. Switch statements are common, and according to aiT they take less
execution time than nested if-statements. The complexity of the larger tasks
is caused only by a large number of calls, and some functions were used many
times in many different contexts.

More paths can be excluded by applying more else-statements instead of lin-
ing up lots of single if-statements that contradict each other. Since the biggest
overestimation by aiT is the inclusion of infeasible paths, else-statements would
decrease the WCET estimate from the analysis without having to use annota-
tions. To make this point clearer, consider the following C code segment:

if(x == 0) y = 1;

30

Task aiT1
aiT2

Size of
source
code

Exec.
Rows

Semicolons
Nodes

in graph
Call
levels

4 1,44 5,2 kb 72 18 1 1
12 1,39 40,7 kb 707 360 20 5
10 1,34 10,9 kb 195 83 3 3
8 1,29 8,2 kb 119 55 5 3
2 1,28 4,5 kb 56 17 1 1
13 1,26 565,0 kb 12765 4143 115 8
1 1,19 3,6 kb 55 11 1 1
7 1,19 9,3 kb 123 70 5 3
9 1,17 5,5 kb 49 23 5 3
5 1,13 6,3 kb 86 35 2 2
11 1,12 8,8 kb 188 73 5 3
3 1,11 4,7 kb 58 21 3 2
6 1,05 4,9 kb 43 11 6 3

Table 4.3: Level of tightening and complexity measures.

if(x == 1) y = 0;

AiT would consider both of these expressions to be true when calculating
the WCET, something that any programmer can see is impossible. The variable
x can not have the value 1 and 0 at the same time. If the code would have
been written as below, aiT would have been forced to choose only one of the
expressions to be true.

if(x == 0) y = 1;
else if(x == 1) y = 0;

This is a recurring cause of overestimations, but rarely found in this simple
form.

4.4 WCET Comparisons

In the beginning of the project, the real hardware was used to measure the tasks.
The problem with this was that it did not show what path that was measured
and that it was some overhead from starting and stopping the timer. When
the emulator was put into work, everything was much simpler. The path was
logged and the overhead could be left out of the measurement. Therefore, the
only measured times mentioned in this report are the ones from the emulator,
and comparing these to early measurements done on the real hardware we
could establish the fact that they are accurate. The overhead for the timers
is approximately 3.5 microseconds, which for the shortest task was as much as
85% of its measured WCET. For the longest task, the overhead was only 0,32%.

31

As mentioned in the introduction, the sources for the Rubus WCET es-
timates are measurements done while running automatic testing plus a safety
margin. The size of the margin can vary, but is roughly based on the complexity
of the tasks. Since the Transmission ECU was upgraded with a new CPU, there
are many tasks that have not been remeasured. This can be the answer to why
some of the WCETs are greatly overestimated. Volvo does unfortunately not
have any documentation of which tasks have been remeasured since the CPU
upgrade.

4.4.1 A Look at the Numbers

Figure 4.3: The first eleven tasks.

From the complexity section, we know that the last two tasks in this project
are much more complex than the others. We therefore begin by looking at a
graph showing only the eleven first tasks (Figure 4.3), consisting of four lines.
We revisit the abbreviations introduced in this chapter when saying that these
lines represent, from top to bottom:

• WCET given to Rubus (Rub)

• The first aiT WCET, with as few annotations as possible (aiT1)

• The last aiT WCET, with as many annotations as possible (aiT2)

• Time measured in the emulator with the same execution path as aiT2
(M)

This shows that both Rub and aiT1 are safe. On the other hand, when
looking at this graph, the Rubus values seem to be unnecessarily pessimistic,

32

especially for the shorter tasks. The most probable cause to this is the CPU
upgrade. We also see that there is an unexpected gap between aiT2 and M. Since
these two have the same execution path, it was expected that they would show
almost identical times. The source to this overestimation by aiT is probably
most due to uncertain memory accesses. As mentioned earlier, it takes very
long time to annotate every memory access and this is why we chose to only
annotate the values of the two most influencial register pointers.

Since aiT makes overapproximations, it might be the case that the tool finds
a WCET path that is very close to, but not the actual WCET path. The path
found by aiT can be the longest due to the overapproximations. If this would be
the case, we can not guarantee that M represent the actual WCET. The aiT2
value is a little larger than M and the margin should be enough to call aiT2 a
safe WCET.

Figure 4.4: The first twelve tasks.

We now take a look at figure 4.4, which is the same graph as above but with
one more task added. The reason we excluded this task from the previous graph
is that it is so much larger than the others that we would get a poor resolution
of the graph.

We can draw the same conclusions as above, but add that Rub for task
12 is greatly overestimated. Although it does not have as high percentage of
overestimation as tasks 1-4 it definitely books more of the total period time.

When adding the largest task to the graph (Figure 4.5), we directly see that
this task is almost ten times as large as task 12. This is the most complex task
in the articulated haulers today.

As we can see here, we get some different results than earlier. The Rubus line
is crossed, and that means that the Rubus WCET might be unsafe. However, the

33

Figure 4.5: All thirteen tasks.

path found might still be practically infeasible depending on the values of the
input arguments. When the tasks were run in the debugger, every argument
was set manually. In the real environment, this combination of inputs might
never happen. Nevertheless, it should be noted that there exists a path that
indicates a large underestimation in Rubus.

4.4.2 Another Way of Comparing

The graph in figure 4.6 is different from the others since it shows M, aiT1 and
Rub in relation to aiT2. The lines represent, from top to bottom:

1. Rub / aiT2

2. aiT1 / aiT2

3. M / aiT2

We can not draw any new conclusions from this graph since it is just another
way of looking at the data presented by the other graphs, but it might be easier
to see some properties. We can easily see that Rub is more than twice needed
for tasks 1-5 and task 12, and that it underestimates the last task. We also
see that M always is less than aiT2 and that aiT1 always is larger. The main
point of this graph is to get a better look at the sizes of overestimations and the
accuracy of aiT. Causes for the large overestimations of tasks 1-5 are probably
the CPU upgrade and that interrupts can affect the execution times of the
smaller tasks to a higher percentage than for the larger.

34

Figure 4.6: Rub, aiT1 and M in relation to aiT2.

Task Rub aiT1 aiT2 M Rub
aiT2

aiT1
aiT2

M
aiT2

1 30 5,697 4,788 4,138 6,27 1,19 0,86
2 30 7,516 5,879 5,34 5,10 1,28 0,91
3 50 13,516 12,122 10,84 4,12 1,11 0,89
4 60 19,304 13,394 11,24 4,48 1,44 0,84
5 50 25,243 22,364 21,56 2,24 1,13 0,96
6 40 28,637 27,243 23,48 1,47 1,05 0,86
7 40 34,546 29,061 25,4 1,38 1,19 0,87
8 50 39,425 30,455 26,235 1,64 1,29 0,86
9 60 41,94 36 28,88 1,67 1,17 0,80
10 80 73,576 55,091 49,335 1,45 1,34 0,90
11 100 78,758 70,273 55,418 1,42 1,12 0,79
12 430 199 143,606 124,8 2,99 1,39 0,87
13 800 1827 1447 1090 0,55 1,26 0,75

AVG 140 184,17 145,94 113,59 2,68 1,23 0,86
MIN 30 5,70 4,79 4,14 0,55 1,05 0,75
MAX 800 1827,00 1447,00 1090,00 6,27 1,44 0,96

Table 4.4: Data derived from Rubus, aiT and measurements. Source data for
the graphs in this chapter. Times in microseconds.

35

4.5 Work Time

Since every WCET estimate above aiT2 is safe, it would definitely be a tight-
ening of the times if we applied aiT1 in Rubus instead of the values used today.
For the last task we would get a safer WCET estimate. Of course, it would be
even better if we could apply the values in aiT2, or even a value close above
M. The question is if the work to find these values is worth the improvement.
Well, that depends on how full the schedule is, i.e. how tight values we need.
The labor needed to get aiT1 down to aiT2 varied from task to task, but the
two largest tasks took together around seven weeks. The easiest tasks were an-
notated and solved in about an hour each. Since the input arguments affect the
path and vice versa, it is not possible to divide the work time into the time
used for annotating and the time used to solve the input arguments. There are
many things that need to be considered when manually cutting paths. These
are a few:

• If two paths contradict each other, which one is the longest?

• If path A assigns a value to a variable that controls path B, is it worthwhile
to enter path A in order to be able to enter path B? What is the tradeoff?

• What variables are changed in each path, and how do they control the
following execution of the task?

If aiT would be able to consider how assignments of variables affect the flow
further along the task, we would get a much better WCET estimate directly and
we would not need to put so much labor into manually steering aiT. We hope
to see a WCET tool in the near future that both calculates execution times and
finds a feasible flow depending on the variables controlling the if-statements
(i.e. a combination of good flow analysis and good calculation methods). The
flow analysis in aiT today does not do much to exclude infeasible paths.

We had never used aiT before this project, and can now establish the fact
that it can take about a week to get used to the program. The first analysis
can perhaps be run within an hour, but in order to annotate correctly and to
produce tighter results, more work time is needed. It is our intention that this
report should be of help when getting started. After having read this report,
read the aiT manual, and spent a week with aiT, any user should be able to
get a decent analysis result for almost any of the tasks in this project within
a day. To rerun an analysis after a code revision or a CPU upgrade could be
done in an hour if relative addressing have been used in the annotations and if
the code revision is fairly small. The user should always save the project files
and the annotation files so that all work does not have to be redone in case of
another analysis.

4.6 Batch Jobs

Since it can take a number of minutes to run an analysis, it might be good if
we are able to run a batch of tasks in sequence without having to manually

36

start the analysis of every task. If the project files are created beforehand, they
can all be run from a script. The script might be an executable file entitled
batch.bat that includes an arbitrary number of lines like these:

ait c166 -b -z -m task1.apf
ait c166 -b -z -m task2.apf

The following flags can be used in the commands:

• -b: batch mode - starts the analysis directly

• -x: terminates aiT if the analysis is successful

• -z: terminates aiT whether the analysis is successful or not

• -m: aiT starts with the window minimized

When running this test, we used an older version of aiT than the version
that exists today. A slight problem with batch jobs in that version was that
the graphs were discarded upon termination of aiT, so only the report files was
saved. If we wanted to save the graphs, we should not have used the flags -x
or -z, and we would have still needed to sit in front of the computer to save
the graphs and to terminate aiT before the next analysis could start, and this
contradicted the purpose of a batch job. A newer version of aiT was however
released during the final weeks of this project, where we could choose to save
the graph.

We tried to run a batch job for the 24 first red tasks alphabetically. The
setup of the project files took about two hours, and to run the analyses on
an AMD Athlon XP1900+ (1.61 GHz) with 512 Mb of RAM took about 70
minutes.

Many of the tasks contained unresolved loops and one task even contained
a memory access that aiT classified as erroneous. The table below shows the
results of the analyses. The unbounded tasks may be rather easy to annotate
the loop bounds for, but we will not do that now because the test with this
batch was to see how we could get many results in very short time.

A much better use of the batch job is to run it on tasks that have been
analyzed before, i.e. when all tasks are to be reanalyzed after code revisions or
a CPU upgrade. Remember that annotations might need to be updated if the
project have been rebuilt. Annotated register values or memory accesses might
have changed for all tasks.

37

Task Rub aiT1 Rub
aiT1

A 1000000 unbounded
B 1400000 unbounded
C 50000 11728 4,26
D 200000 15304 13,07
E 100000 23667 4,23
F 60000 19304 3,11
G 30000 19607 1,53
H 100000 unbounded
I 40000 39819 1
J 50000 23910 2,09
K 100000 39788 2,51
L 200000 13455 14,86
M 30000 unbounded
N 100000 unbounded
O 200000 memory error
P 50000 unbounded
Q 100000 3182 31,43
R 25000 10697 2,34
S 50000 30849 1,62
T 60000 44273 1,36
U 50000 21637 2,31
V 50000 32667 1,53
X 70000 28607 2,45
Y 30000 3879 7,73

Table 4.5: The results from the batch job.

38

Chapter 5

Conclusions

AiT would be of good use for Volvo if there is need to make more room in the
red task schedule, but the tool still has a long way to go before it is perfect. The
measurement results were at average as low as 86% of the aiT results produced
from the same path.

Even though aiT overestimates the WCET because inclusion of infeasible
paths in the analysis, the values derived with minimal number of annotations
are much tighter than the values used today. Since the work for tightening the
aiT results further is quite time consuming, it might not be worth it. AiT1 were
at average 23% larger than aiT2. The Rubus overestimations compared to aiT’s
varies between 527% and 42%1 with an average of 168%. Future versions of aiT
will most probably give tighter results with less user interaction. This thesis is
giving a good indication that the aiT value is safe, and no measurement should
be needed if aiT is used in future work. If the tool is used in this way, it does
not consume much time and gives a decent result.

Three pros of using aiT with only the mandatory annotations:

• Calculates fast

• Guaranteed safe WCETs

• Tighter WCETs than used today

It is quite hard to find some really strong arguments against using aiT, but
the licence fee and the time needed to get started with the program are of course
two negative aspects. Another one is that the overestimation increases with the
complexity of the tasks, so aiT may give very high results for complex tasks.

Today, the code analyzed is well suited for static WCET analysis but could
be even better. If-statements that contradict each other should be written as
if-else-statements when possible. In the case that Volvo decides to include aiT
in their development process, annotations could be written in the source code.
Since it can be hard to predict which branches that not are parts of the WCET
path, the only annotations suited for source code should be loop bounds.

To use batch jobs is a good idea if many tasks, or perhaps the whole system,
is to be analyzed. Batch script, project files and annotation files should be saved

1Except for the last task that had an underestimation of 45%

39

so that they can be reused. Some memory pointers might be changing every
time the project is built, so they should be checked in the debug environment
before running analyses on a new binary.

40

Chapter 6

Future Work

Since we only have analyzed thirteen tasks out of hundreds, analyses for the
others could be done. We saw by the batch job test that we can get results
quickly if we are satisfied with the first aiT value.

The main focus for AbsInt, and other WCET researchers as well, should lie
on getting the value analysis to exclude more infeasible paths, even between
routines. Since the automatic loop bound detection only manages to find the
very same bounds that can be found manually, it is not of much use except for
speeding up the process a little. It is probably a long way before the difficult
loop bounds can be found, those that even are hard to find manually. The flow-
annotations in aiT should also be able to specify program points that are not
executed together.

41

Bibliography

[1] AbsInt Angewandte Informatik GmbH company website. URL:
http://www.absint.com

[2] Arcticus Systems company website. URL: http://www.arcticus-
systems.com

[3] Mälardalen University website. URL: http://www.mdh.se

[4] Volvo Construction Equipment company website. URL:
http://www.volvoce.com

[5] Tidorum Ltd company website. URL: http://www.tidorum.fi

[6] Heptane WCET Tool website.
URL: http://www.irisa.fr/aces/work/heptane-demo/heptane.html

[7] A. Ermedahl: A Modular Tool Architecture for Worst-Case Execution Time
Analysis. PhD dissertation, Uppsala University, Dept. of Information Tech-
nology, Box 325, Uppsala, Sweden (2003). ISBN 91-554-5671-5

[8] N. Bermudo, J. Gustafsson, B. Lisper, C. Sandberg: A Tool for Auto-
matic Flow Analysis of C-programs for WCET Calculation. In 8th IEEE
International Workshop on Object-oriented Real-time Dependable Systems
(WORDS 2003)(2003).

[9] A. Ermedahl, J. Gustafsson, B. Lisper: Towards a Flow Analysis for
Embedded System C Programs. In 8th IEEE International Workshop on
Object-oriented Realtime Dependable Systems (WORDS 2005)(Feb 2005).

[10] K. Hänninen, T. Riutta: Optimal Design. Master’s Thesis. Dept. of Com-
puter Science and Engineering, Mälardalen University, Box 883, S-721 23
Väster̊as, Sweden (February 2003).

[11] D. Sandell: Evaluating Static Worst-Case Execution-Time Analysis for a
Commercial Real-Time Operating System. Master’s Thesis. Dept. of Com-
puter Science and Engineering, Mälardalen University, Box 883, S-721 23
Väster̊as, Sweden (2004). Also as technical report [12].

[12] D. Sandell, A. Ermedahl, J. Gustafsson, B. Lisper: Static Timing Analysis
of Real-Time Operating System Code. In Proc 1st International Symposium
on Leveraging Applications of Formal Methods (ISOLA´04)(Oct 2004).
Based on Master’s Thesis [11].

42

[13] S. Byhlin: Evaluation of Static Time Analysis for Volcano Communica-
tions Technologies AB. Master’s Thesis. Dept. of Computer Science and
Engineering, Mälardalen University, Box 883, S-721 23 Väster̊as, Sweden
(2004). Also as technical report [14].

[14] S. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper: Applying Static WCET
Analysis to Automotive Communication Software. Euromicro Conference
of Real-Time Systems (ECRTS’05)(July 2005). Based on Master’s Thesis
[13].

[15] CC-Systems company website. URL: http://www.cc-systems.com

[16] O. Eriksson: Evaluation of Static Time Analysis for CC Systems. Master’s
Thesis. Dept. of Computer Science and Engineering, Mälardalen Univer-
sity, Box 883, S-721 23 Väster̊as, Sweden (June 2005).

[17] Y. Zhang: Evaluation of Methods for Dynamic Time Analysis for CC Sys-
tems AB. Master’s Thesis. Dept. of Computer Science and Engineering,
Mälardalen University, Box 883, S-721 23 Väster̊as, Sweden (June 2005).

[18] S. Thesing: Safe and Precise WCET Determination by Abstract Interpre-
tation of Pipeline Models. PhD dissertation, Universität des Saarlandes,
Saarbrücken Germany (2004). ISBN 3-937436-00-6

[19] Infineon company website. URL: http://www.infineon.com

[20] V.P. Heuring, H.F. Jordan: Computer Systems Design and Architecture.
Prentice Hall, Upper Saddle River, NJ 07458 (1997). ISBN 0-8053-4330-X.

[21] Lauterbach Datentechnik GmbH company website. URL:
http://www.lauterbach.com

43

