
aiT

Worst-Case Execution Time Analyzer

AbsInt GmbH

2012

© AbsInt GmbH 2012

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: tests and measurements

 Test end criteria unclear

 No full coverage possible

 ―Testing, in general, cannot show the absence of errors.‖ — DO-178B

 Access to physical hardware: high effort
due to limited availability and observability

2

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

© AbsInt GmbH 2012

Real-Time Systems

 Controllers in planes, cars, plants, etc. are expected
to finish their tasks within reliable time bounds

 It is essential that an upper bound on the execution times of all tasks
is known: commonly called the worst-case execution time (WCET),
computed at the code level

 WCET of tasks prerequisite for scheduling analysis
at system level (e.g. SymTA/S from Symtavision)

3

4

P
ro

b
a
b
ili

ty

Execution time

Exact worst-case
execution time

Safe worst-case
execution time

estimate
Best-case

execution time

Unsafe:
execution time
measurement

Worst-Case Execution Time

Modelling Hardware

5

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC 5xx (2000) PPC 755 (2001)

x = a + b;

68K (1990)

0

100

200

300

Best case Worst case

20 20

Execution time (clock cycles)

0

100

200

300

Best case Worst case

3

321

Execution time (clock cycles)

0

100

200

300

0 wait cycles 1 wait cycle External

3 8
30

Execution time depending on flash memory

© AbsInt GmbH 2012

The Timing Problem

 Timing coverage: For safe time bounds at the task level,
MC/DC coverage is not enough. Full path coverage
for every possible hardware state is necessary.

 Hardware complexity: Caches, pipelines, etc. must be taken into
account. Timing anomalies create complex scenarios. The appropriate
analysis strategy is dictated by the hardware architecture.

 Example: Cache misses on certain accesses
do not necessarily lead to the overall worst-case behavior

 Example: Starting with an empty cache
does not necessarily lead to the overall worst-case behavior

 Predictability: The hardware must be configured in a predictable way.

 Bad/no predictability on single cores due to: unified instruction/data
caches, FIFO/random caches, caches in write-back mode, etc.

 Bad/no predictability on multi cores additionally due to:
access conflicts on shared caches/memories/flash prefetch buffers,
bus conflicts on shared memory buses, etc.

6

© AbsInt GmbH 2012

Static Analysis – an Overview

 General definition: results are only computed
from the program structure,
without executing the program under analysis

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug finders/bug hunters

 Cannot guarantee that all bugs are found

 Examples: Splint, Coverity CMC, Klocwork K7,…

 Sound semantics-based/abstract-interpretation–based

 Can guarantee that all bugs from the class under analysis are found

 Results valid for every possible program execution
with any possible input scenario

 Examples: aiT WCET Analyzer, StackAnalyzer, Astrée

7

© AbsInt GmbH 2012

Abstract Interpretation

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency–precision
trade-off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by abstract interpretation.

 Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

8

Definitely
correct / in time definitely false

Definitely
correct / in time

potentially
false

Concrete
semantics

Abstract
semantics

© AbsInt GmbH 2012

Aerospace: DO-178B/DO-178C

 ―Verification is not simply testing.
Testing, in general, cannot show the absence of errors.‖

 ―The general objectives of the software verification process
are to verify that the requirements of the system level,
the architecture level, the source code level and the executable
object code level are satisfied, and that the means used to satisfy
these objectives are technically correct and complete.‖

 The DO-178C is a revision of DO-178B to bring it up to date with respect
to current software development and verification technologies, e.g. the
use of formal methods to complement or replace dynamic testing:
theorem proving, model checking, abstract interpretation.

9

© AbsInt GmbH 2012

Automotive: ISO-26262

10

Criticality levels:

A (lowest) to

D (highest)

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

Automotive: ISO-26262

11

 Importance of static verification emphasized:

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

Automotive: ISO-26262

12

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

13

Excerpt from:

IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable

electronic safety-related systems – Part 3: Software requirements

E&E Systems: IEC-61508 – Edition 2.0

© AbsInt GmbH 2012

14

Criticality levels:

SIL1 (lowest) to

SIL4 (highest)

Confidence levels:

R1 (lowest) to

R3 (highest)

E&E Systems: IEC-61508 – Edition 2.0

© AbsInt GmbH 2012

Railway: prEN-50128

15

Excerpt from:

DRAFT prEN 50128,

July 2009

© AbsInt GmbH 2012

16

Industry Perspective

 In most current safety standards variants of static analysis are
recommended or highly recommended as a verification technique

 Abstract-interpretation–based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties

 Examples:

 Static WCET analysis (aiT)

 Static stack usage analysis (StackAnalyzer)

 Static runtime error analysis (Astrée): proving the absence of erroneous
pointer dereferencing, out-of-bounds array indices, arithmetic overflows,
division by zero,…

 aiT application examples:

 safety-critical Airbus software in many airplane types (A380,…)

 by NASA as an industry-standard tool for demonstrating
the absence of timing-related software defects in the
Toyota Unintended Acceleration Investigation (2010)*

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the

Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.

17

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end ;

recursion "_fac" max 6;

SNIPPET "printf" IS NOT ANALYZED AND TAKES MAX 333 CYCLES;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is read-only;

Optional annotations

Entry points

 WCET

 Visualization

 Documentation

aiT

void Task (void)

{

variable++;

function();

next++:

if (next)

do this;

terminate()

}

Application code

Executable

à =€@€
aŒ† |

@€,@€;Þ
Kÿÿô;ÿ

KÿÿØ‰ •€2
}Œ`øÿÿ™•
€(8H#é³¡•

¶•€(

Compiler
Linker

aiT WCET Analyzer

Combines

 global static program analysis by abstract interpretation:
microarchitecture analysis (caches, pipelines,…) + value analysis

 integer linear programming for path analysis
to provide safe and precise bounds on the WCET

© AbsInt GmbH 2012

Qualification Support Kits

 Report Package
 Operational Requirements Report:

lists all functional requirements

 Verification Test Plan:
describes one or more
test cases to check each
functional requirement

 Test Package
 All test cases listed in the

Verification Test Plan report

 Scripts to execute
all test cases including an
evaluation of the results

18

© AbsInt GmbH 2012

Summary

 Current safety standards require demonstrating
that the software works correctly and the relevant safety goals
are met, including non-functional program properties.
In all of them, variants of static analysis are recommended
or highly recommended as a verification technique.

 Abstract-interpretation–based static analysis tools compute results
which hold for any possible program execution and any input
scenario. They are in wide industrial use and can be considered as
the state-of-the-art for validating non-functional safety properties.

 aiT Worst-Case Execution Time Analyzer

 StackAnalyzer for proving the absence of stack overflows

 Astrée for proving the absence of runtime errors

 These tools enhance system safety
and can contribute to reducing the V&V effort.

19

© AbsInt GmbH 2012

20

info@absint.com

www.absint.com

