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Functional Safety
= Demonstration of functional correctness Required by
» Well-defined criteria D0-17/88/D0-178C.
= Automated and/or model-based testing 180-26262, E-30126,

= Formal techniques: model checking, theorem proving [EC-61508

= Satisfaction of non-functional requirements

= No crashes due to runtime errors (division by zero, mmﬁ%@ W
invalid pointer accesses, overflow and rounding errors)
= Resource usage
= Timing requirements (e.g. WCET, WCRT) [EC- 5%.8
= Memory requirements (e.g. no stack overflow)

= Insufficient: tests and measurements
= Test end criteria unclear
= No full coverage possible
= “Testing, in general, cannot show the absence of errors.” — DO-178B

= Access to physical hardware: high effort
due to limited availability and observability
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Background

Safety-critical embedded systems must satisfy high quality objectives
Software failures can

= in general: cause high costs, e.g. due to recall campaigns

= in highly critical systems: endanger human beings

Software test and validation responsible for significant part
of development costs (frequently 50% and beyond)
Challenge: comprehensively ensure system safety at reasonable costs

AbsInt focuses on non-functional program errors

(timing, memory consumption, runtime errors)

Examples of related software failures:
= Time drift in Patriot rockets in 1991 (rounding error)
= Crash of railway switch controller 1995 in Hamburg-Altona (stack overflow)
= Explosion of Ariane rocket 1996 (arithmetic overflow)
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Static Analysis — an Overview

= General definition: results are only computed
from the program structure,
without executing the program under analysis

= (Classification
= Syntax-based: Style checkers (e.g. MISRA-C)

= Unsound semantics-based: Bug finders/bug hunters
= Cannot guarantee that all bugs are found
= Examples: Splint, Coverity CMC, Klocwork K7, ...
= Sound semantics-based/abstract-interpretation—based

= Can guarantee that all bugs from the class under analysis are found

= Results valid for every possible program execution
with any possible input scenario

= Examples: aiT WCET Analyzer, StackAnalyzer, Astrée
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Abstract Interpretation

= Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency—precision
trade-off). This makes analysis of large software projects feasible.

=  Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by abstract interpretation.

= Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

Abstract
semantics

Concrete
semantics

potentially
false

Definitely Definitely
correct / in time definitely false correct / in time
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O
Aerospace: DO-178B/D0O-178C

= “Verification is not simply testing.
Testing, in general, cannot show the absence of errors.”

= “The general objectives of the software verification process
are to verify that the requirements of the system level,
the architecture level, the source code level and the executable
object code level are satisfied, and that the means used to satisfy
these objectives are technically correct and complete.”

Accuracy and consistency: The objective is to determine the correctness and consistency of
the Source Code, including stack usage, fixed point arithmetic overflow and resolution,
resource contention, worst-case execution timing, exception handling, use of uninitialized
variables or constants, unused variables or constants, and data corruption due to task or
interrupt conflicts.

= The DO-178C is a revision of DO-178B to bring it up to date with respect
to current software development and verification technologies, e.g. the
use of formal methods to complement or replace dynamic testing:
theorem proving, model checking, abstract interpretation.
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Automotive: ISO-26262

Table 1 — Topics to be covered by modelling and coding guidelines

_ ASIL
Topics | o
A B c D Criticality levels:
1a |Enforcement of low complexity ++ ++ ++ ++ A (lowest) to
D (highest
1b  |Use of language subsets® ++ ++ ++ ++ (hig )

b The objectives of method 1b are

— Exclusion of ambiguously defined language constructs which might be interpreted differently by different modellers,
programmers, code generators or compilers.

— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions
or identical naming of local and global variables.

— Exclusion of language constructs which might result in unhandled run-time errors.

7.4.17 An upper estimation of required resources for the embedded software shall be made, including:
a) the execution time;

b) the storage space; and

Excerpt from:

Final Draft ISO 26262-6 Road vehicles — Functional safety —
Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.
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Automotive: ISO-26262

= Importance of static verification emphasized:

8 Software unit design and implementation

8.1 Objectives

The first objective of this sub-phase is to specify the software units in accordance with the software
architectural design and the associated software safety requirements.

The second objective of this sub-phase is to implement the software units as specified.

The third objective of this sub-phase is the static verification of the design of the software units and their
implementation.

8.2 General

Based on the software architectural design, the detailed design of the software units is developed. The
detailed design will be implemented as a model or directly as source code, in accordance with the modelling
or coding guidelines respectively. The detailed design and the implementation are statically verified before
proceeding to the software unit testing phase. The implementation-related properties are achievable at the
source code level if manual code development is used. If model-based development with automatic code
generation is used, these properties apply to the model and need not apply to the source code.

Excerpt from:

Final Draft ISO 26262-6 Road vehicles — Functional safety —
Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.
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Automotive: ISO-26262

Table 9 — Methods for the verification of software unit design and implementation

Methods ASIL

A B Cc D
1a | Walk-through? T+ + o o
1b |Inspection® + +4 ++ +
1c | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e |Control flow analysis® + + ++ ++
1f | Data flow analysis®® + + ++ .
1g |Static code analysis + ++ ++ T+
1h | Semantic code analysisd + + + +
2 In the case of model-based software development the software unit specification design and implementation can be verified at the
model level.
b

Methods 1e and 1f can be applied at the source code level. These methods are applicable both to manual code development and

to model-based development.

c

d

Methods 1e and 1f can be part of methods 1d, 1g or 1h.

Method 1h is used for mathematical analysis of source code by use of an abstract representation of possible values for the

variables. For this it is not necessary to translate and execute the source code.

Excerpt from:

Final Draft ISO 26262-6 Road vehicles — Functional safety —
Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.
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7.2.2.12 Where data defines the interface between software and external systems, the
following performance characteristics shall be considered in addition to 7.4.11 of |[EC 61508-
2:

a) the need for consistency in terms of data definitions;

o

invalid, out of range or untimely values;

o O

)
)
) response time and throughput, including maximum loading conditions;
) best case and worst case execution time, and deadlock;

)

overflow and underflow of data storage capacity.

[

7.4.2.9 Where the software is to implement safety functions of different safety integrity
levels, then all of the software shall be treated as belonging to the highest safety integrity
level, unless adequate independence between the safety functions of the different safety
integrity levels can be shown in the design. It shall be demonstrated either (1) that
independence is achieved by both in the spatial and temporal domains, or (2) that any
violation of independence is controlled. The justification for independence shall be
documented.

Independence of execution should be achieved and demonstrated both in the spatial and
temporal domains.

Spatial: the data used by a one element shall not be changed by a another element. In
particular, it shall not be changed by a non-safety related element.

Temporal: one element shall not cause another element to function incorrectly by taking too
high a share of the available processor execution time, or by blocking execution of the other
element by locking a shared resource of some kind.

Excerpt from:
IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable
electronic safety-related systems — Part 3: Software requirements
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Table A.9 — Software verification
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E&E Systems: IEC-61508 — Edition 2.0

Technique/Measure

Properties

Correctness of verification with
respect to the previous phase

. successful completion
(See 7.9) ful leti
Technique/Measure Ref. SIL 1 SIL 2 SIL 3 SIL 4 1 | Boundary value analysis R1
Formal proof c512 R R HR (R2 if objective criteria for boundary
Animation of specification and design C.5.26 R R R R results)
Static analysis B.6.4 HR HR HR 2 | Checklists R1
Table B.8
- - - 3 | Control flow analysis R1
Dynamic analysis and testing B.6.5 R HR HR HR
i i 4 | Data flow analysis R1
Table B.8 — Static analysis
5 | Error guessing R1
(Referenced by Table A.9) 6a | Formal inspections, including specific R2
criteria
Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4 Bb | Walk-through (software) R1
1 Boundary value analysis C.5.4 R R HR HR 7 | Symbolic execution R2
2 [Checklists B.2.5 R R R R R3 if used in the context formally
3 | control flow analysis C5.9 R HR HR HR defined preconditions and
postconditions and performed by a
4 Data flow analysis Cc.5.10 R HR HR HR tool using a mathematically rigorous
algorithm
5 Error guessing C.5.5 R R R R 9
6a [ Formal inspections, including specific criteria C.5.14 R R HR HR 8 | Design review R1
6b | Walk-through (software) C.5.15 R R R R R2 (with objective criteria)
7 Symbolic execution C.5.11 . R R 9 | Static analysis of run time error behaviour R1
8 Design review C.516 HR HR HR HR R3 for certain classes of error if
- performed by a tool using a
9 Static analysis of run time error behaviour B.2.2, C.24 R R R HR mathematically rigerous algorithm
10 [Worst-case execution time analysis C.5.20 R R R R 10 | Worst-case execution time analysis s R3

Criticality levels:

SIL1 (lowest) to
SIL4 (highest)

© AbsInt GmbH 2012

Confidence levels:
R1 (lowest) to
R3 (highest)
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Railway: prEN-50128

Table A.5 — Verification and Testing (6.2 and 7.3)

Table A.8 — Software Analysis Techniques (6.3)

12

TECHNIQUE/MEASURE Ref siLo | siL1 siL2 | siL3 | siLa TECHNIQUE/MEASURE Ref SILO | SIL1 SIL2 | SIL3 | SIL4
1. Formal Proof D.31 _ R R HR HR 1. Static Software Analysis D14 R HR HR HR HR
2. Probabilistic Testing D.47 - R R HR HR g;%
3. Static Analysis A18 - HR HR HR HR 2. Dynamic Software Analysis A2 - R R HR HR
4. Dynamic Analysis and Testing A12 | - HR | HR | HR | HR A3
5. Metrics D.42 _ R R R R 3. Cause Consequence Diagrams D.6 R R R R R
6. Traceability Matrix D.68 - M M M M 4. EventTree Analysis D23 - R R R R
7. Software Error Effect Analysis D.26 B R R HR | HR 5. Fault Tree Analysis b2s | R R R HR | HR
8. Test Coverage for code A.20 R HR HR HR HR
9. Functional/ Black-box Testing A13 | HR | HR | HR M M Table A.18 — Static Analysis
10. Performance Testing AT | - HR | HR | HR | HR TECHNIQUE/MEASURE Ref | SILO [ SIL1 | sIL2 | SIL3 | SIL4
1. Interface Tesfing p37 | HR [ HR | HR | HR | HR 1. Boundary Value Analysis D4 ] R R HR | HR
Requirements 2. Checklists D8 - R R R R
1) Erc:(ra ifoqt\,ﬂgrgﬁafety Integrity Level 3 or 4, the approved combinations of techniques shall be 4, 6, 9 and 3. Control Flow Analysis Do N HR HR bR HR
2) For Software Safety Integrity Level 1 or 2, the approved combinations of techniques shall be 6 together 4. Data Flow Analysis D.11 - HR HR HR HR
with one of 3 or 4. 5.  Error Guessing D.21 - R R R R
3) Technique 2 shall not be employed on its own. 6. Fagan Inspections D24 _ R R HR HR
. — . . - . . 7. Sneak Circuit Analysis D.55 - - - R R
D.69 Static verification of runtime properties by abstract interpretation 6. Symbolc Execution D63 - = R R R
Aim 9. Walkthroughs/Design Reviews D.66 HR HR HR HR HR
10. Static verification by abstract interpretation D.69 - R R HR HR

To characterize software runtime properties by static analysis of source code.

Description

Static verification consists of a semantic analysis of the source code. Abstract interpretation provides a

means for analysing the source code without running it. A set of rules are expressed to provide an abstract
model of the code execution. They call on a mathematical framework. The abstract interpretation of the
source code gives information on software properties, e.g. about unreachable code, run-time performances
(e.g. worst case execution time) and behaviour upon runtime errors (e.g. division by zero, overflow, out-of-

bound array). Analysis can be automated by tools.

July 2009

While being conservative regarding the code properties, abstract interpretation enables the analysis of
complex software systems.

© AbsInt GmbH 2012
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Industry Perspective

= In most current safety standards variants of static analysis are
recommended or highly recommended as a verification technique

= Abstract-interpretation—based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties

= Examples:
= Static WCET analysis (aiT)
= Static stack usage analysis (StackAnalyzer)

= Static runtime error analysis (Astrée): proving the absence of erroneous
pointer dereferencing, out-of-bounds array indices, arithmetic overflows,
division by zero,...

= aiT application examples:

= safety-critical Airbus software in many airplane types (A380,...)

= by NASA as an industry-standard tool for demonstrating
the absence of timing-related software defects in the
Toyota Unintended Acceleration Investigation (2010)*

*Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the
Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.
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Crashes or undefined behavior
due to runtime errors are bad

Too many false alarms are bad

Astrée detects all runtime errors :
with few false alarms -

14

The Static Analyzer Astrée

Array index out of bounds
Integer division by 0 o g S
Invalid pointer dereferences I
Arithmetic overflows and wrap-arounds

Floating point overflows and invalid operations
(IEEE floating values Inf and NaN)

User-defined assertions, unreachable code, uninitialized variables
Elimination of false alarms by local tuning of analysis precision

@
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The Zero Alarm Goal

= With zero alarms, the absence of runtime errors

is automatically proven by the analysis, without
additional reasoning

= Design features of Astrée:

= Precise and extensible analysis engine, combining powerful abstract
domains (intervals, octagons, filters, decision trees,...)

= Support for precise alarm investigation
= Source code views/editors for original/preprocessed code
= Alarms and error messages are linked: jump to location with one click
= Detailed alarm reporting: precise location and context, call stack, etc.
- Understanding alarms = Fixing true runtime errors + Eliminating false alarms

= The more precise the analysis is, the fewer false alarms there are.
Astrée supports improving precision by

= parametrization: local tuning of analysis precision
= making external knowledge available to Astrée
= specialization: adaptation to software class and target hardware

@
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Types of Runtime Errors (1/2)

= Runtime errors causing undefined behavior (with unpredictable results)
= Modifications through out-of-bounds array accesses, dangling pointers,...
= Integer divisions by zero, floating-point exceptions,...

= Example:  int main() ¢
int n, TI[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, TI[n]);

}

PPC MAC: n=2147483647,T[n]=2147483647 32-bit Intel: n=2147483647,T[n]=-135294988
Intel MAC: n=2147483647,T[n]=-1208492044 64-bitIntel: Bus error

= Astrée’s reaction:
= Raise alarm in order to signal a potential runtime error
= Continue analysis for scenarios where the runtime error did not occur

= If the error definitely occurs in a given context,
stop the analysis for this context and report the error

@
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Types of Runtime Errors (2/2)

17

= Runtime errors causing unspecified, but predictable behavior

= Integer overflow

= Tnvalid shifts <<, >>, or casts,...

= Astrée’s reaction:

1. Raise alarm in order to signal a potential runtime error
2. Continue analysis with an overapproximation of all possible results

- No artificial restrictions on value ranges, so the results are always safe

volatile short x,y;

void main ()

{

z = (short) ((unsigned short)x +
(unsigned short)y);
__ASTREE assert((-2<=z && z<=2));
}

__ASTREE volatile_input((x, [-1,1]));
__ASTREE volatile_ input((y, [-1,1]));

/

Overflow detected in
7 signed short — unsigned short

short z; / conversions

Nevertheless:
precise range for z on two's complement
hardware (configurable)

© AbsInt GmbH 2012
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Astrée Domains

= Interval domain, Octagon domain
Floating-point computations:

Control programs often perform
massive floating-point computations

Rounding errors have to be taken into
account for precise analysis

Astrée approximates expressions
on variables V/ as

[ao’ bo] +Z[ak , bk] 'Vk

Rounding modes can be changed
during runtime

Astrée considers the worst case
of all possible rounding modes

#include <stdio.h>
int main () {
double x; float a,vy,z,rl,r2;

a = 1.0, x = 1125899973951488.0;
y = x+a; z = x-a;
rl =y - z; r2 = 2*a;
printf (" (x+a)-(x-a) = $f\n", rl);
printf ("2a = %$f\n", r2);

}

Output:

(x+a)-(x-a) = 134217728.0000

2a = 2.0000

Astrée result;

[-1.34218e+08,
2.0

rl in
r2 =

1.34218e+08]

Further value domains: Decision tree domain, Digital filter
domain, Clock domain, Memory domain,...

© AbsInt GmbH 2012
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Analysis Process

1. Preprocess the code
= by adapting the build process, or
= from the built-in Astrée preprocessor

2. Define appropriate analysis options

3. Run the analysis
1. Investigate the alarms
2. Fix true errors

3. Use Astrée directives
to fine-tune the analyzer

4. Generate final reports

© AbsInt GmbH 2012
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Real-World Applications

= Astrée has been used successfully for industrial
avionics, automotive and space applications

= Success stories include:

= 132000 lines of C code. 1200 false alarms on first run.
After correction and parametrization: 11 false alarms.
Analysis runtime: 110 min on a 2.4 GHz PC, 1 GB RAM.

= 200000 lines of preprocessed C code. 467 alarms on
first run. After correction and parametrization: zero
alarms. Runtime c. 6h on a 2.6 GHz PC, 16 GB RAM.

= /755197 lines of preprocessed C code. After correction
and parametrization: zero alarms. Runtime c. 6h on
Intel Core2Duo 2.66 GHz, 8 GB RAM.
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- Qualification Support Kits

[ Firetox ~ |

€ > |;jj’j files//{C:fUsers/Ferdi/AppData/Local/Te

" Re po rt Pa C ka g e | Verification Test Plan s3for PowerpC | + | W . - . -

= QOperational Requirements Report: VeM
lists all functional requirements —— — S

& & |} files//Cf Usersfferdi/AppData/Local/ Te c - e L@l B

= Ve rificatio n Test Pla n : ' |7 Verification Test Plan a3 for PowerPC |;jj; Tool Operational Requirements a3 for... x |7 V,
deSCFI beS one or more Tool Operational Requirements a3 for :

Inty

test cases to check each ] POWErPC
functional requirement s d ST ————

Reference: ai20111208

u Te St Pa C ka g e Ead: Baseline: Revision: 173159

= All test cases listed in the | Introduction
Verification Test Plan report *| Purpose of the document

* | This document describes the operational requirements specification for the stack analysis

H StackAnalyzer of a® which determines safe upper bounds for the size(s) of the
u S t to t component 3 . PP
C rI S eXeC u e The 19 stack of code snippets given as routines in executables for the PowerPC processors. These
upper bounds are output as annotations to call graphs and control-flow graphs of the

a | I test Ca Ses i n Cl u d i n g a n : analyzed program. The annotated graphs can be interactively explored with AbsInt's graph

viewer aiSee.

eva I U ati O n Of th e res U Its - ‘Writing and evolution of the document

All the operational requirements are given in textual representation

The syntax used for naming the requirements is the following:

QK _Component_Id
Indicates the component the test belongs to, e.g. ais fora
requirement regarding a user annotation, apx for a test

Component

regarding project file settings. or stack measurement for
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Summary

= Current safety standards require demonstrating

that the software works correctly and the relevant safety goals
are met, including non-functional program properties.

In all of them, variants of static analysis are recommended

or highly recommended as a verification technique.

Abstract-interpretation—based static analysis tools compute results
which hold for any possible program execution and any input
scenario. They are in wide industrial use and can be considered
state-of-the-art for validating non-functional safety properties.

= aiT Worst-Case Execution Time Analyzer
= StackAnalyzer for proving the absence of stack overflows
= Astrée for proving the absence of runtime errors

These tools enhance system safety
and can contribute to reducing the V&V effort.
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