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Abstract
This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy
consumption of embedded software based on statically predictable hardware events. The tool
utilises techniques usually used for worst-case execution time (WCET) analysis together with
bespoke energy models developed for two predictable architectures—the ARM Cortex-M0 and the
Gaisler LEON3—to perform energy usage analysis. EnergyAnalyzer has been applied in various
use cases, such as selecting candidates for an optimised convolutional neural network, analysing the
energy consumption of a camera pill prototype, and analysing the energy consumption of satellite
communications software. The tool was developed as part of a larger project called TeamPlay,
which aimed to provide a toolchain for developing embedded applications where energy properties
are first-class citizens, allowing the developer to reflect directly on these properties at the source
code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of
benchmarks for the two target architectures and the results show that the statically estimated
energy consumption has, with a few exceptions, less than 1% difference compared to the underlying
empirical energy models which have been validated on real hardware.
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1 Introduction

Safety-critical embedded systems are used in various domains such as transportation,
aerospace, medical devices, and industrial control systems. These systems are designed
to meet certain non-functional requirements, such as timing or energy usage constraints, in
addition to functional requirements. The satisfaction of these non-functional requirements
is essential for the correct operation of the system and the safety of its users. Failure to
meet these requirements can result in catastrophic consequences, such as loss of life or severe
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financial losses. Therefore, it is necessary to ensure that these systems are designed and
implemented with reliable guarantees for their non-functional requirements.

For timing constraints, reliable guarantees can be obtained by using sound timing analysis
methods. Timing analysis is a technique used to analyse the temporal behaviour of a system
and predict the worst-case execution time (WCET) of tasks and other timing properties.
Accurately determining a bound for the WCET of a task is essential for ensuring that a
system meets its timing constraints and avoiding potential hazards.

Energy consumption is another crucial non-functional requirement for embedded systems.
Energy usage constraints are becoming more and more important due to the increasing use
of battery-powered and energy-constrained devices. Moreover, reducing energy consumption
can increase the lifetime of the device and reduce its operating costs. However, ensuring that
a system meets its energy usage constraints is a challenging task, as energy consumption is
highly dependent on the system’s workload, input data, and hardware characteristics. In
contrast to timing analysis, which has a well-established theoretical foundation, creating an
energy model that yields safe yet tight bounds for energy consumption is almost impossible.
There are two primary reasons for this. First, energy consumption is measured in physical
units (Joule), whereas processor cycles are a logical unit of time. Moreover, the amount
of energy consumed by a processor is highly specific to the actual device. Two processors
from the same production batch may already show a small difference in energy consumption.
Additionally, the amount of energy consumed by one and the same processor may increase over
time as the silicon degrades [11]. While this is true for timing as well, as the clock frequency
may differ slightly from processor to processor, there is an easy mitigation: The logical unit
of time (processor cycles) can be converted to the physical unit of time by multiplying with
the interval of clock frequencies. Second, the actual amount of energy consumed depends on
the switching activity in the processor, which is highly data-dependent. Thus, creating an
energy model requires measuring all possible input combinations for each instruction, which
is usually not feasible [16]. To address these limitations, several research works proposed
using empirical methods to characterise energy models. For example, Georgiou et al. [9]
suggest using pseudo-randomly created data to characterise an Instruction Set Architecture
(ISA) energy model. This approach reduces the number of input combinations needed to
create the energy model and allows for faster evaluation of the model.

In recent years, researchers have proposed using event counters to create more accurate
energy models for predictable architectures. Event counters are hardware components that
count the number of times certain events occur during execution, such as instructions executed
or cache misses. By using event counters to create an energy model, the model can accurately
capture the energy consumption of a more diverse set of programs. Furthermore, event
counters are available on many modern processors, which makes the proposed energy models
more accessible to developers. Pallister et al. [23] proposed an event counter-based method
for data-dependent energy modelling, which is a more accurate way of modelling energy
consumption for systems that process variable data sets. The proposed method identifies the
relationship between the input data and the processor’s energy consumption and uses this
relationship to create an energy model. The authors evaluated their method on two different
processors and found that it provided more accurate predictions of energy consumption than
previous methods.

This paper presents EnergyAnalyzer, a novel tool for static energy consumption analysis.
It incorporates accurate energy models [19, 20] for two specific architectures: the Gaisler
LEON3 microprocessor [3], a radiation-tolerant microprocessor commonly used in the space
communications sector, and the ARM Cortex-M0 microcontroller [1], known for its ultra-low
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power capabilities. Main contribution of this paper is the utilisation of standard techniques
from WCET analysis for static worst-case energy consumption (WCEC) analysis. The
microarchitectural analysis statically predicts the progression of performance counter values
which are used as input for the aforementioned energy models. When validated against model
predictions using real-time samples, the static analysis shows <1% difference in estimated
energy for the vast majority of tested benchmarks.

2 Related Work

Several studies have attempted to construct worst-case energy models capable of capturing the
WCEC at the ISA level [13, 32]. In Jayaseelan et al. [13], the authors bound the WCEC on a
simulated processor by maximizing the switching activity factor for each simulated component
to obtain a WCEC cost for each ISA instruction. Although this method retrieves the WCEC
for all the ISA instructions, it could result in significant overestimation because the absolute
worst-case on the hardware simulation used for the energy model’s characterization phase
might be infeasible to be triggered by any program on the actual hardware implementation
of the same architecture. Additionally, the approach is not feasible on physical hardware
because there is no practical way of maximizing the switching activity on hardware. To
construct an equivalent ISA energy model for a fabricated processor, one would need to
exhaustively search all combinations of valid data for the operands of an instruction, making
it infeasible in most cases due to the huge space of possible input data combinations for each
ISA instruction. Wägemann et al. [32] constructed an energy model capable of capturing
the WCEC. The specifics of the model’s characterization are presented in [28]. Nevertheless,
they tested this energy model on a benchmark and admitted that such an absolute energy
model could lead to significant overestimations, making the retrieved energy consumption
bounds less useful.

Ideally, data-sensitive energy models would be created to capture the energy cost of
executing an instruction based on the circuit switching activity caused by the operands
used. Such models can potentially capture the WCEC of a program without overestimation.
However, recent work has demonstrated that finding the data that triggers the WCEC is an
NP-hard problem and that no practical method can approximate tight energy consumption
upper bounds within any level of confidence [16]. Therefore, Georgiou et al. [9] suggested
using pseudo-randomly created data to characterise an ISA energy model, as their empirical
evidence showed that such models tend to be close to the actual worst case. Although this
approach is expected to yield loose upper-bound energy consumption estimations, their
experimental results showed a low level of underestimation of the WCEC (less than 4%) for
the programs tested. Such estimations can still provide valuable guidance to the application
programmer to compare coding styles or algorithms in terms of resource consumption.
Design decisions can be made based on empirical investigations to determine the level of
over-provisioning that ensures the required level of dependability for the given application.

3 Tool Overview

Over the last several years, a more or less standard architecture for static timing-analysis
tools has emerged [34, 12, 6, 30], which is also implemented in AbsInt’s WCET analyser aiT.
One can distinguish four major building blocks:
1. The decoder translates the executable to an internal form that is used by the other parts

(value analysis, microarchitectural analysis, etc). Architecture specific patterns decide
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whether an instruction is a call, branch, return, or just an ordinary instruction. This
knowledge is used to form the basic blocks of the control-flow graph (CFG). Then, the
control-flow between the basic blocks is reconstructed. In most cases, this is done com-
pletely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control-flow reconstruction.

2. Afterwards, the value analysis determines safe approximations of the values of processor
registers and memory cells for every program point and execution context. These
approximations are used to determine bounds on the iteration numbers of loops and
information about the addresses of memory accesses. Value analysis information is also
used to identify conditions that are always true or always false. Such knowledge is used
to infer that certain program parts are never executed and therefore do not contribute to
the worst-case resource consumption. Value analysis is again architecture-dependent.

3. The microarchitectural analysis then determines upper bounds for the execution times
of basic blocks by performing an abstract interpretation of the program execution on
the particular architecture, taking into account its pipeline, caches, memory buses, and
attached peripheral devices. The microarchitectural analysis is even more architecture-
dependent than the decoder and value analysis, as the specification of the ISA alone
does not suffice to create an abstract model of the hardware’s timing behaviour, but
the particular specifics of a particular processor implementing this specification must be
taken into account (e.g., cache size, buffers, pre-fetching, etc). The microarchitectural
analysis is usually a composition of both pipeline and cache analysis.

4. Using the results of the preceding analysis phases, the path analysis phase searches for
the worst-case execution path. The analysis translates the control-flow graph with the
basic block timing bounds determined by the microarchitectural analysis and the loop
bounds derived by the value analysis into an Integer Linear Program (ILP). The solution
of the ILP yields a worst-case path together with a safe upper bound of the WCET. Path
analysis is generic, i.e., does not depend on the target architecture.

The structure of EnergyAnalyzer is similar to the structure of aiT. In fact, both tools share
most components. In particular, they both use the same decoder for CFG reconstruction
and the same value, loop, control-flow, and path analyses. Only the microarchitectural
analysis differs. aiT uses a microarchitectural timing model to derive safe upper bounds of
the WCET for each instruction. In contrast, EnergyAnalyzer’s microarchitectural analysis
computes worst-case performance counter values for each basic block, which are used as
input values for the microarchitectural energy models presented in Section 4. While the
input values for the energy models are conservatively predicted, the model itself does not
give a worst-case guarantee. During path analysis, worst-case execution frequencies of basic
blocks are combined with approximate energy model results to produce a tight estimate of
the worst-case energy behaviour which is not necessarily an upper bound.

4 Microarchitectural Energy Analysis

A key component of EnergyAnalyzer is the underlying use of accurate energy models
for the target microarchitectures. Based on previous research experience, a hardware
event-based methodology was utilised to generate and evaluate the models [18, 17]. Such
techniques are well established and provide high prediction accuracy for both CPU and full
system modelling. In their research, Rodrigues et al. [25] conducted a systematic review
of Performance Monitoring Unit (PMU) events also referred to as Performance Monitoring
Counters (PMCs) commonly used in modern microprocessors. They showed the effectiveness
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of these events in characterising and modelling dynamic power consumption. Several other
studies have also explored accurate power modelling [21, 24, 33, 27, 17].

The PMC-based energy consumption estimation models were obtained via Ordinary Least
Squares [14] linear regression analysis, where coefficients, βx, are determined for each counter,
Cx, to predict the overall energy cost, i.e., E =

∑
x(βx × Cx) + α, with α being the residual

error term and x being the event that is tracked by the performance counter. The coefficients
βx are the constants in the energy model that are program independent while the counters
Cx are the variables that depend on the program and its input. For a specific program with
known counter values, the energy model can be used to estimate the energy consumed during
the program’s execution.

For static-analysis-based energy consumption estimation, the overall energy consumption
estimate of a piece of code is typically constructed from the estimates of the ISA basic blocks
of the program. Thus, a PMC-based energy model can enable energy consumption estimation
via static analysis only if the counters used for the modelling and prediction can be statically
predicted at the ISA basic block level. The microarchitectural analysis of EnergyAnalyzer
models the parts of the pipeline that have an effect on the performance counters. For example,
the decode unit tracks the number of executed instructions of each type, and the load/store
unit tracks the number of read and write accesses to each memory that is covered by a
performance counter. Thus, for each instruction in the CFG, the microarchitectural analysis
predicts an upper bound for the increase of the various performance counter values. These
values are summed up for the basic blocks and then used as input for the energy model. In
order to make the model scalable for block-level static analysis, we enforced a residual α = 0.
This means that at time 0 the energy predicted is also 0J. We have also used a Non-Negative
Least Squares (NNLS) solver to guarantee positive weights for all the events in the final
energy model, thus always guaranteeing predictable positive energy consumption values
from the model at discrete time slices [15]. We apply the energy model on the worst-case
performance counter values for each block.

The accuracy of the model has been evaluated by using PMC data from a test set with the
generated model equations. The measured power or energy values are then compared to the
estimations obtained from the model. The percentage difference or mean absolute percentage
error (MAPE) between them can be used as an objective metric to quantify model accuracy.
Several different models for each platform were identified and the best performing ones were
integrated into EnergyAnalyzer. Additional details on model generation and validation
techniques used for both target platforms can be found in the accompanying papers [20, 19].

4.1 ARM Cortex-M0 Setup and Energy Model
The target platform on which the Cortex-M0 models were developed and validated is the
STM32F0-Discovery board, which features the STM32F051 microprocessor [29]. The platform
does not feature an on-chip PMU. Thus, a special methodology was developed to obtain the
necessary PMC information, using an extended version of the Thumbulator instruction set
simulator [7]. The target platform allows ten different configurations, depending on CPU
frequency, wait states for flash memory access, and whether instruction pre-fetch is enabled
or not.

We selected the energy consumption model of the ARM Cortex-M0 below for integration
into EnergyAnalyzer. It uses six statically predictable PMCs, and the resulting energy
estimation is measured in nJ. The model offers an estimation error to physical measurements,
calculated as Mean Absolute Percentage Error (MAPE), of 2.8%, for all the data points used
for training and validation. Further details on how the energy analysis models have been
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generated including a breakdown of the available hardware configurations and associated
model weights and performance are presented in Nikov et al. [19].

ECortex-M0 = 0.972565030 × Cexecuted instructions without multiplications

+ 0.652871770 × CRAM data reads

+ 1.031341343 × CRAM writes

+ 1.037625441 × CFlash data reads

+ 1.354953706 × Ctaken branches

+ 2.274650563 × Cmultiplication instructions

The microarchitectural analysis uses the address intervals computed by the value analysis
phase to determine whether a memory read targets the RAM or the Flash memory (or
possibly both). The number of load and store operations, as well as the number of taken
branches, are predicted by analysing the flow of an instruction through the processor pipeline.
There, the type of an instruction is also taken into account.

4.2 Gaisler LEON3 Setup and Energy Model
The LEON3 energy models were trained and validated on the GR712RC evaluation board [2].
Similarly to the STM32F0-Discovery board, this platform also does not feature a PMU. In
order to get the PMC measurements for the models, a new, dual-platform approach using
a Kintex UltraScale FPGA board was developed. The programmable platform was loaded
with a synthesised version of the LEON3 coupled together with the LEON3 Statistics Unit
(L3STAT [4]). The results were synchronised with physical sensor measurements from the
GR712RC platform to obtain the complete data set for model generation and validation.
More details on the platform setup, methodology, and estimation results are presented in
Nikov et al. [20].

The models presented in that paper describe fine-grained power models which are trained
and validated on all available samples. The models integrated into EnergyAnalyzer use the
same methodology, but with one key difference: the samples in the data set are aggregated
for each benchmark to create code-block-sized models, making them more coarse-grained
and the NNLS solver is used to generate positive model weights. Since average power models
would not be very helpful for this purpose, total energy consumption is used instead.

L3STAT provides several performance counters that are useful for modelling the energy
consumption [5]. However, not all of them are statically predictable. Those that can be
statically predicted by EnergyAnalyzer with high accuracy are shown in Table 1. Whether a
memory access results in a possible cache miss is predicted by the cache analysis that is part
of the microarchitectural analysis. The type of instructions and consequently, the update
of the respective counters, are tracked in the pipeline analysis. The following energy model
based on the ISA+Cache subset has been selected for integration into EnergyAnalyzer using
the methodology shown in Appendix A. It has a MAPE of <8.3% compared to physical
measurements and provides energy estimations in J:

ELEON3 = 3.93365 × 10−08 × Cinteger instructions

+ 1.87111 × 10−07 × Cstore instructions
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# Counter Description # Counter Description

C1 ICMISS instruction cache misses C13 TYPE2 type 2 instructions
C3 DCMISS data cache misses C14 LDST load and store instructions
C7 IINST integer instructions C15 LOAD load instructions

C11 BRANCH branch instructions C16 STORE store instructions
C12 CALL call instructions

Table 1 ISA+Cache subset of PMCs.

5 Evaluation

We integrated the energy models from Section 4 into EnergyAnalyzer for ARM Cortex-M0
and EnergyAnalyzer for LEON3, respectively. We evaluated the integration with the help
of the BEEBS benchmark suite [22]. The goal of the evaluation is to determine how close
the statically estimated energy consumption for a given workload is to the model estimation.
Not all of the BEEBS benchmarks exercise the worst-case path through the program during
execution. Thus, a comparison of the results of the analysis and the actual measurements
would compare in two orthogonal dimensions. First, it would compare the tightness of the
model with respect to the actual hardware measurements. Second, it would compare the
exercised path with the worst-case path. In order to fix the comparison to one degree of
freedom, we compared the energy estimates obtained from static analysis and those obtained
from the energy model based on the actual PMC measurements from the platforms. The
tightness of the models has already been demonstrated in Section 4.

In contrast to the safety-critical embedded hard real-time software that is usually analysed
with aiT, the BEEBS benchmarks also contain dynamic memory management using malloc
and free. We did not analyse these benchmarks because the manual annotation effort to
get tight results would be too high. Some of the benchmarks contain computed calls via
function pointers that cannot be resolved automatically. In this case we manually annotated
the call targets. Moreover, we specified constant data in some cases.

For the LEON3, only a subset of the BEEBS benchmarks has been measured on the
hardware setup, because the execution time of some of the benchmarks is too low to
synchronise the FPGA and the ASIC (see Section 4 and accompanying paper [20]).

5.1 EnergyAnalyzer for ARM Cortex-M0

For some benchmarks, the static analysis was not able to derive all loop bounds automatically.
In this case, we used Thumbulator to derive flow constraints for the ILP-based path analysis.
However, the benchmark might not exercise the worst-case path, and thus, using the simulation
trace might not result in the worst-case amount of loop iterations for each loop in the program.
For one of the benchmarks—wikisort—the simulation with Thumbulator fails because the
binary allocated only 4096 bytes of stack, but one routine already needed 4520 bytes of stack.
This causes a stack overflow. Hence, some function pointer variables are overwritten, and
the benchmark cannot be executed correctly. We thus excluded the benchmark from the
evaluation. Two of the benchmarks—qsort and select—contain out-of-bounds accesses.

Table 2 shows the results of the evaluation of EnergyAnalyzer for ARM Cortex-M0. For
43 benchmarks, the difference between the model and the static analysis is less than one
percent, i.e., the execution path exercised during the simulator run is the worst-case path.
Note that the analysis results include the energy consumption of the execution of the main
routine, which is not included in the simulator result, which only contains the path between
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the start trigger and the stop trigger. However, the contribution of this overhead is less
than one mJ and hence, negligible. For the other benchmarks, the static analysis selected
different paths as worst-case execution paths. The maximal observed difference between
the simulator run and the static analysis is 109% for benchmark nsichneu, which models a
state machine with many different execution paths, and the static analysis was not able to
prune infeasible paths. Since the path analysis is a worst-case analysis, it maximises over the
possible execution paths. Hence, the path analysis selects the worst-case combination which
differs significantly from the simulated execution path.

EnergyAnalyzer allows to trade performance for precision by specifying how many calling
and loop contexts should be distinguished during analysis. We used this feature to increase
the analysis precision. The analysis of most benchmarks takes less than four minutes to
complete, with the exception of five benchmarks (rijndael, cubic, sqrt, nbody, picojpeg), which
took between 4 and 59 minutes.

Benchmark Analysis Result Model Result ∆ Note

aha-compress 78.885 mJ 78.828 mJ < 1 %
aha-mont64 99.396 mJ 99.396 mJ < 1 %
bubblesort 366.763 mJ 366.762 mJ < 1 %

cnt 42.813 mJ 42.804 mJ < 1 %
compress 27.895 mJ 27.895 mJ < 1 %

crc 9.623 mJ 9.623 mJ < 1 %
cubic 7.801 J 4.138 J 89 % flow constraints
duff 4.349 mJ 4.349 mJ < 1 %
edn 302.762 mJ 302.762 mJ < 1 %

expint 43.315 mJ 43.315 mJ < 1 %
fac 2.934 mJ 2.904 mJ 1 %

fasta 29.383 J 21.100 J 39 % flow constraints
fdct 12.292 mJ 12.292 mJ < 1 %

fibcall 1.493 mJ 1.493 mJ < 1 %
fir 1.994 J 1.994 J < 1 %

frac 1.183 J 1.183 J < 1 %
insertsort 3.089 mJ 3.089 mJ < 1 %

janne_complex 1.402 mJ 1.402 mJ < 1 %
jfdctint 31.481 mJ 31.476 mJ < 1 %
lcdnum 886.941 uJ 805.000 mJ 10 %

levenshtein 400.926 mJ 400.926 mJ < 1 %
ludcmp 174.559 mJ 174.559 mJ < 1 %

matmult-float 1.537 J 1.537 J < 1 %
matmult-int 842.724 mJ 842.649 mJ < 1 %

minver 131.316 mJ 84.348 mJ 56 % flow constraints
nbody 25.844 J 25.844 J < 1 %
ndes 293.387 mJ 293.297 mJ < 1 %

Benchmark Analysis Result Model Result ∆ Note

nettle-arcfour 105.880 mJ 105.880 mJ < 1 %
nettle-cast128 23.214 mJ 23.211 mJ < 1 %

nettle-des 22.595 mJ 22.595 mJ < 1 %
nettle-md5 5.467 mJ 5.467 mJ < 1 %

nettle-sha256 50.507 mJ 50.507 mJ < 1 %
newlib-exp 70.439 mJ 70.439 mJ < 1 %
newlib-log 52.954 mJ 52.954 mJ < 1 %
newlib-sqrt 10.289 mJ 10.289 mJ < 1 %

nsichneu 61.017 mJ 29.185 mJ 109 %
picojpeg 4.885 J 4.885 J < 1 %

prime 209.663 mJ 209.663 mJ < 1 %
qsort 27.294 mJ 20.408 mJ 34 % flow constraints
qurt 139.891 mJ 139.890 mJ < 1 %

rijndael 7.176 J 7.042 J 2 %
sglib-arraybinsearch 76.596 mJ 76.596 mJ < 1 %
sglib-arrayheapsort 86.857 mJ 86.857 mJ < 1 %
sglib-arrayquicksort 65.600 mJ 65.600 mJ < 1 %

sglib-queue 126.250 mJ 126.250 mJ < 1 %
slre 206.734 mJ 206.734 mJ < 1 %
sqrt 11.529 J 11.529 J < 1 %
st 4.142 J 2.945 J 41 % flow constraints

statemate 13.331 mJ 9.308 mJ 43 %
stb_perlin 5.145 J 5.145 J < 1 %

stringsearch1 46.362 mJ 46.362 mJ < 1 %
strstr 5.480 mJ 5.480 mJ < 1 %

trio-snprintf 105.378 mJ 65.427 mJ 61 % flow constraints
trio-sscanf 139.345 mJ 71.618 mJ 95 % flow constraints

ud 21.863 mJ 21.862 mJ < 1 %
whetstone 22.533 J 16.687 J 35 % flow constraints

Table 2 Evaluation of the integration of the energy model for the ARM Cortex-M0 into static
energy consumption analysis. For most benchmarks, the difference between the model and the static
analysis is less than one percent, i.e., the execution path exercised during the simulator run is the
worst-case path. For the other benchmarks, the simulated execution path and the path found by the
worst-case path analysis differ significantly.

5.2 EnergyAnalyzer for LEON3
Some of the BEEBS benchmarks contain floating-point computations. However, since the
FPGA implementation of the LEON3 was built without a FPU, the benchmarks cannot use
floating-point instructions but must use a software library that emulates these floating-point
computations. One of the benchmarks—minver—computes a matrix multiplication using
floating-point numbers, where one of the matrices is never initialised. Thus, the analysis has
no knowledge about the possible floating-point values and the actual execution on the CPU
will process random values, depending on what was stored in the respective memory cells.
We performed both the standard worst-case analysis for this benchmark and an analysis
where we assumed that the computations only process normalised IEEE 754 floating-point
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numbers and zero. This reflects the “flush to zero” option present in many architectures.
The computed energy consumption estimate is then cut in half, which shows that enabling
“flush to zero” in software floating-point computations can save a lot of energy.

The LEON3 implements the SPARCv8 ISA, which uses register windows for fast context
switches, and for providing hardware support for the call stack. However, the number of
register windows is limited. The particular LEON3 model used for our experiments, available
on the GR712RC board and its FPGA equivalent, has eight register windows. Due to the
overlapping nature of the register windows, and their use as a ring buffer, only seven are
usable. Hence, in case a program needs more than seven register windows, the processor
triggers software traps to handle the register window overflow (and underflow). This happens
for two of the benchmarks—picojpeg and slre. Hence, the processor needs to execute trap
functions when it detects a register window overflow or a register window underflow. This
causes additional energy consumption which must be taken into account during a system-level
energy analysis.

Table 3 shows the results of the evaluation of EnergyAnalyzer for LEON3. The analysis
of most benchmarks takes less than four minutes to complete, but for three benchmarks—
matmult-float, nbody, and picojpeg—the analysis duration was 50 minutes, 45 minutes, and
24 minutes, respectively.

Benchmark Analysis Result Model Result ∆ Note

aha-compress 11.004 J 11.004 J 0 %
aha-mont64 7.499 J 7.491 J < 1 %
bubblesort 3.898 J 3.889 J < 1 %

edn 39.186 J 39.186 J 0 %
fir 159.469 J 159.469 J 0 %

frac 59.391 J 59.339 J < 1 %
levenshtein 25.506 J 25.491 J < 1 %

ludcmp 10.992 J 10.814 J 2 %
matmult-float 2.847 J 2.822 J 1 %

minver 14.372 J 4.643 J 210 % worst-case
minver 7.398 J 4.643 J 59 % assumptions
nbody 4.512 J 4.496 J < 1 %
ndes 24.828 J 24.467 J 1 %

Benchmark Analysis Result Model Result ∆ Note

nettle-aes 19.401 J 19.389 J < 1 %
nettle-arcfour 9.644 J 9.639 J < 1 %
nettle-sha256 2.763 J 2.754 J < 1 %
newlib-exp 4.374 J 4.319 J 1 %
newlib-log 3.284 J 3.252 J 1 %
picojpeg 503.732 J 503.918 J < -1 % traps

prime 3.670 J 3.667 J < 1 %
qurt 8.001 J 7.958 J 1 %

sglib-arraybinsearch 6.283 J 6.281 J < 1 %
sglib-arrayheapsort 13.066 J 13.062 J < 1 %
sglib-arrayquicksort 13.066 J 13.052 J < 1 %

sglib-queue 13.901 J 13.900 J < 1 %
slre 14.988 J 15.261 J -2 % traps

Table 3 Evaluation of the integration of the ISA+Cache energy model for the LEON3 into static
energy consumption analysis. For minver, the measured execution path and the path found by the
worst-case path analysis differ significantly (see text). The costs of traps are not included in the
microarchitectural analysis (see text).

6 Integration into TeamPlay Toolchain and Case Studies

EnergyAnalyzer for ARM Cortex-M0 and EnergyAnalyzer for LEON3 can be used as stan-
dalone tools to estimate the energy consumption of embedded software. They provide a
rich and user-friendly graphical user interface to ease the analysis process. However, they
have been developed during the TeamPlay project as part of a larger toolchain where they
enable multi-criteria optimisation in a compiler, contract-based programming, and energy-
aware scheduling. In the following, we present the integration of EnergyAnalyzer into the
WCET-aware C compiler WCC [8].

The mechanisms implemented to integrate EnergyAnalyzer within WCC mirror the mech-
anisms in place to perform WCET analysis using AbsInt’s WCET analyser aiT. XTC files
[10] are used to call aiT and EnergyAnalyzer in batch mode (i.e., without graphical user
interface). An XTC file specifies the binary to be analysed, the entry point, the path to an
annotation file which contains details about the target architecture configuration as well as
user-provided annotations like flow facts, and the path to an XML report file. This XML

WCET 2023
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output file is then parsed by WCC after invocation of EnergyAnalyzer to extract the analysis
results and import them into WCC’s Low-Level IR at function and basic block level. This
attached energy data can further be exploited by WCC to perform various compiler-level
energy-aware optimisations, and thus, establishing a smooth flow between compiler-level
energy analysis and optimisation. WCC supports source-level flow facts utilising ANSI C
pragmas. A user can annotate their code with loop bounds, recursion depths, and execution
frequency of an instruction relative to some other instruction. These source-level pragmas
are translated within WCC into AIS2 annotations for aiT and EnergyAnalyzer.

EnergyAnalyzer has been applied to several use cases in the course of the TeamPlay
project. First, it has been used to select candidates from a set of implementations of compute
elements for an optimised convolutional neural network (CNN). Acting as an evaluation guide,
it helped decide which optimisations should be considered for the final CNN implementation
and which showed unacceptable energy consumption and should not be used. Second, it has
been used to analyse the energy consumption of a camera pill prototype. The addition of an
encryption algorithm showed a significant impact on the energy consumption of the camera
pill that also varied depending on the type of encryption algorithm, with SPECK being an
order of magnitude more energy efficient than AES and PRESENT. EnergyAnalyzer closely
predicted the actual energy usage that was physically measured on the system with prediction
relative errors ranging from 1% to 5%, depending on the encryption algorithm evaluated, and
thus is a viable method for estimating energy consumption of a system such as the camera
pill. Third, EnergyAnalyzer has been used to analyse the energy consumption of a piece of
satellite software. One of the main challenges of the space industry is power consumption,
as spacecrafts usually have limited access to power sources. EnergyAnalyzer proved to be
a useful tool thanks to its support of the LEON3 on the GR712RC platform, which is the
most common processor ASIC used by European space companies. The results showed a
precise prediction of the energy consumption for the different binaries, with <1% estimation
error compared with physical measurements for the final optimised version compiled with
WCC. Another interesting feature of EnergyAnalyzer was the result visualisation using call
and control-flow graphs, showing the energy consumption for each of the functions inside the
binary which could be used not only for predicting and minimising energy consumption but
also for qualifying code for space.

More details on the integration of EnergyAnalyzer in the TeamPlay toolchain and the
use cases on which the toolchain has been applied are presented in Rouxel et al. [26].

7 Conclusion

This paper presents our work on static energy consumption analysis for embedded systems.
We created energy models for two predictable architectures: the ARM Cortex-M0 and the
Gaisler LEON3, both achieving estimation errors of less than 10% when validated against our
two target hardware platforms. Both models are based on hardware event counters, which
can be predicted by static analysis. The models are integrated into EnergyAnalyzer, a novel
tool for code-level static energy consumption analysis. Our evaluation results show a good
accuracy of the energy consumption analysis. The tool provides a user-friendly graphical
interface to analyse energy consumption at different levels of granularity, from the entire
program to individual functions and basic blocks. EnergyAnalyzer is part of the TeamPlay
toolchain [26], where it enables multi-criteria code optimisation during compilation.

We demonstrated the usefulness of our tools in several case studies including a camera-
pill designed for medical diagnosis and a space communications platform. In each case,
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the tool provided precise predictions of the energy consumption and helped to identify
energy bottlenecks. In conclusion, our work provides a useful approach to analyse energy
consumption in embedded systems. A potential avenue for extension is to include peripheral
energy consumption for system-level analysis [31]. We believe that our approach can help
to design more energy-efficient embedded systems and applications, which is a crucial step
towards sustainable development.
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A LEON3 Energy Model Selection

# Counter # Counter # Counter

C0 TIME C5 WBHOLD C14 LDST
C1 ICMISS C7 IINST C15 LOAD
C2 ICHOLD C11 BRANCH C16 STORE
C3 DCMISS C12 CALL
C4 DCHOLD C13 TYPE2

Table 4 All supported PMCs by
EnergyAnalyzer.

Model Expression MAPE[%]
Train Test

Energy [J]
All Supported
All Events

E = 0.155261 + 2.94155e-08 × C0

+2.5661e-09 × C2 + 9.93453e-09 × C5

+8.97535e-10 × C12 + 3.21255e-09 × C13

+6.14384e-09 × C15 + 4.54827e-08 × C16

1.14 0.29

Energy [J]
All Supported
Bottom-Up

E = 0 + 3.19557e-08 × C0

+5.79224e-08 × C16
1.20 1.38

Energy [J]
All Supported
Top-Down

E = 0.131077 + 3.13122e-08 × C0

+9.17778e-09 × C5 + 2.99043e-09 × C15

+3.92999e-08 × C16

1.02 1.54

Energy [J]
All Supported
Full-Exhaustive

E = 0.131087 + 3.13122e-08 × C0

+9.17779e-09 × C5 + 2.99043e-09 × C14

+3.63095e-08 × C16

1.02 1.54

Energy [J]
IsaCache
All Events

E = 0 + 1.18567e-06 × C3

+5.9072e-07 × C12 + 3.88949e-08 × C13

+8.03337e-08 × C14 + 6.89885e-08 × C16

8.38 24.03

Energy [J]
IsaCache
Bottom-Up

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

Energy [J]
IsaCache
Top-Down

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

Energy [J]
IsaCache
Full-Exhaustive

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

Table 5 Coarse-grained Model Results for the
Gaisler GR712RC platform.

We have chosen the ISA+Cache subset of PMCs shown in Table 1 because these events
can be statically predicted with highest accuracy. However, there are more events that
are statically predictable. A list of all the supported PMCs can be found in Table 4, with
further information available in the L3STAT User Manual [4]. Separate models are generated
using each of the PMC subsets. In addition to using the bottom-up and top-down search
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algorithms, detailed in [20], the relatively small PMC sets also allow for a full-exhaustive
search to be used. The resulting models are then compared against a model that uses all
available PMCs. Table 5 presents the results of the coarse-grained model generation and
evaluation. The train and test benchmark sets used are the same as the ones used for
the fine-grain model generation and validation, presented in [20]. As expected, the models
computed using the larger All Supported PMC list perform better than the ones using the
ISA+Cache list. However, it is interesting to note that the three search algorithms exploring
the ISA+Cache PMCs all converge on the same model with the STORE event present in
all models generated, regardless of PMC selection and search method. The reason why the
ISA+Cache models perform worse than the All Supported models is that the TIME event,
which is the single best predictor of power/energy according to previous work [18, 17], is not
included in the list. However, the reduced precision during microarchitectural analysis for
the All Supported subset outweigh the higher model accuracy. Additionally, it seems that if
only one search algorithm can be used due to time limitation, the top-down search seems
to produce overall better models than bottom-up and very similar models to full-exhaustive
while taking only a fraction of the time to search through the list of events.
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