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Abstract: This case study analyses the possibilities to improve the execution time of model-based developed software by
applying optimisations during code generation and compilation. The present case study is performed on flight control software,
for which safety aspects are accounted throughout the development. Therefore, a formally verified compiler is used for the
optimisation during the compilation. The optimisation is evaluated by execution time measurements on the target and a static
worst-case execution time analysis. Based on the results, recommendations for certain model patterns are given, which impact

the worst-case execution time analysis.

1 Introduction

The functionalities of flight control and flight management systems
grew rapidly in the last decades. With the trend to unmanned aerial
vehicles (UAVs), where the complete system has to be operated
automatically, the functional range of flight control and flight
management expanded further. In addition to these extended
functionalities, the first certification standards for remotely piloted
aircraft demand similar or even higher design assurance levels
(DALs) for the development processes in comparison to the
manned aircraft in some cases. For example, for the development
of an aircraft with a maximum take-off weight of two tonnes and
multiple reciprocating engines, a catastrophic failure condition
demands DAL C [1] for the manned case and DAL B [2] for the
unmanned case. To manage the higher demands regarding safety
and functionality, model-based approaches are often used. The
benefit of these approaches is that the functions can be tested in
simulations at an early stage of the development for which the
detection of failures and incompatibilities is easier. The work in [3]
shows that errors detected during this early stage lead to less costs
and effort for the whole system development. In model-based
development, process steps like code generation can be automated,
which leads to fewer costs. A cost-effective development is
necessary so that UAVs are competitive to manned aircraft in the
civil market [4].

This paper presents a case study for the integration of a model-
based developed flight control algorithms into a cyber physical
system. This universal flight control system, developed at the
Institute of Flight System Dynamics at TU Munich, is implemented
based on the certification requirements and processes and is easily
adaptable to different aircraft. At the moment, the system is used in
three different aircraft:

» on a small UAV with a maximum take-off weight of 150 kg as
primary flight control computer (FCC) [5],

* as digital auto pilot interfaced by an experimental flight
management system on a commuter CS 23 aircraft of the
German Aerospace Centre [6],

e on the research demonstrator aircraft of the institute, a twin
engine CS 23 aircraft, which can be used for demonstrating
various flight control algorithms by providing a UAV-like
environment with the security of a backup pilot on board of the
aircraft. In this paper, this software variant was used to generate
the results [7].
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The flight control system consists of sensors that gather
information about the aircraft's state, a command and control
interface for the pilot or flight operator, an FCC that computes the
flight control laws, and actuators that execute the calculated
commands. For the systems above, the same FCC hardware is
utilised. The other components are different on each platform.

This paper focuses on the integration of the algorithms into the
FCC an embedded target, which is used to execute the flight
control laws in the real environment afterwards. The algorithms are
developed using Simulink and Stateflow [8] and then are
transferred into source code using MathWorks Embedded Coder
(EC) [9]. As the system shall be developed in consideration of the
certification rules, the approach presented in this paper is
motivated by DO-178 [10] for the overall software development
and DO-331 [11] for the model-based part. These guidelines are
relevant for the development of the UAV, because both the military
certification requirements like STANAG 4671 [2] as well as the
proposal for civil rules like AMC RPAS.1309 [12] propose these
guidelines as acceptable means of compliance. The use of model-
based development techniques is not completely new for the
development of flight control systems. There are approaches where
the model developed by the control engineers is transferred
manually into a version which is target compatible [13] and also
approaches where the model is transferred in an automated process
exist [14]. One of the novelties of the approach in this paper is that
the model developed by the system and control engineers is used
for auto code generation and target integration without further
modification. The benefit is a leaner process. The challenge of such
an approach is that the generated code is required to be compatible
with the target and is verifiable on the target from a software point
of view. The compatibility with the target is especially necessary
regarding the memory and timing requirements. The timing aspect
is of great importance for flight control software, because
assumptions are made for the delay of the whole control loop
during the controller development. These timing constraints are
necessary to prove stability of the control algorithm. During the
software integration process, each component must show that the
assumptions for the timing are met and, therefore, the delay of the
whole control loop does not exceed the expected boundary.
Otherwise, the stability of the control algorithm cannot be
guaranteed. The model developed by control experts does not
necessarily consider aspects that a software engineer would have in
mind when producing code for a real-time system. The paper
especially considers the optimisation possibilities of timing aspects
in model-based developed software. It compares and evaluates
optimisations during auto code generation and during compilation.
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The used optimisations can be applied without further effort during
the development process. The applied methods also do not have an
adverse influence on the verification methods. Therefore, applying
optimisations during the development process might compensate
that no extra model was generated that explicitly addresses an
efficient implementation for an embedded target. A side effect of
optimisation, which is not further discussed in this paper, is the
reduction of the memory consumption of the target software. For
all variants, the execution time is analysed by measurement on the
real target and worst-case analysis. Based on these results, it is
assessed whether the approach of using the model utilised for
controller design for auto code generation is a feasible way for
certification.

Therefore, this paper considers more facets than [15], where the
aspects of the model-based development are not considered, the
timing analysis is only performed considering a WCET analysis
and only the model-based code parts are compiled using an
optimising compiler.

This paper is structured as follows: In Section 2, the FCC
hardware is described, followed by a section where the software
structure and functionalities are explained. In Section 4, different
variants of the software, which are produced in this case study, are
presented. The methods applied to analyse the execution timing are
shown in Section 5, whereas the result follows in Section 6.
Finally, recommendations based on the results are given in Section
7.

2 Hardware overview

The requirements for the development of the hardware are that the
platform provides a high computational performance as well as
various digital external interfaces. The reason for a high number of
interfaces is that the system is used in an environment where high
availability is needed and, therefore, it might be necessary to share
the information with more redundant sources or sinks. In contrast
to other approaches where a whole platform including custom I/O
modules is developed [16], it shall be possible to integrate the FCC
in existing aircraft. Often they already provide some sensors.

Hence, the embedded system is not equipped with one standardised
network interface but with many different interface types common
in avionics systems. To fulfil these requirements, a multi CPU
approach was selected. Fig. 1 shows an overview of the FCC
consisting of two processors for the external interfaces and a main
CPU for computation of the flight control algorithms.

To provide the external interfaces, two ARM Cortex-M3
processors are used. In other projects, a field programmable gate
array is often used for this purpose [17, 18]. The reason of utilising
microcontrollers here was to analyse the usage of such devices for
I/O tasks and to show the effort which is necessary for such an
development in the context of safety critical airborne software that
is regulated by DO-178 [10]. This is of interest, because, since the
DO-254 [19] came in effect, the shifting of functionalities from
software to hardware is not that attractive anymore. The two
Cortex-M3 /O processors are connected to external interfaces. The
data from the external interfaces is accumulated in the random
access memory of the I/O processor and is transferred to the main
CPU on request. Two point-to-point dual duplex FEthernet
interfaces are used to exchange the data. All messages that have to
be sent on external interfaces are also transferred to the /O CPUs
using Ethernet. Either the messages are sent immediately, or they
are buffered in an FIFO until the necessary resource is available.

To achieve high computational power for the computation of
the flight control laws, an MPC8349 was selected. This CPU is
based on an e300 core with 32 KB of instruction cache and 32 KB
of data cache. Both caches consist of 128 sets and each set consists
of eight blocks. The operating frequency of the core is 533 MHz.
Attached to the CPU are 16 MB of Flash and 256 MB of DDR
SDRAM.

3 Software structure and functions

This section gives an overview of the software structure, the
functionalities implemented in the Simulink model, the interface to
the manually developed software parts, and the processes followed
during generation of the model.

3.1 Software framework
X
The complete software on the main CPU is implemented as a
m /0 single-rate system and, hence, no operating system is applied. To
Processor 1 m ensure the cyclic execution of the system, a static scheduler, which
Cortex-M3 uses the periodic interval timer (PIT) of the CPU, is implemented.
Each time cycle is split into a foreground task and a background
e task. An overview of the different tasks is given in Fig. 2.
Main At first the main application is executed in the foreground task.
Processor Afterwards, hardware check functions, which are non-time critical,
MPC8349 are executed in the background task. The approach of a single-rate
system decreases the complexity of the worst-cases analysis of the
system. As the impact on the cache content due to task switches is
/O low, the content of the caches can be analysed with a higher
m Procaacor m precession than in a multi-rate system. To trigger the beginning of
a cycle, the reset of the PIT is checked during a busy wait. The
Cortex-M3 reset of the PIT does not trigger an interrupt service routine,
because the complete software on the main processor is
implemented without interrupts. This is due to the fact that
interrupts may have an impact on the execution state of the
Fig. 1 FCC hardware overview processor and, therefore, they might have a significant impact on
the timing of the CPU [20]. The first task executed in a cycle is the
PIT Receive PIT
Rset Tige Reset
Foreground : Execute Pack and .
Task Wait for /O Data Extract Data Controller Transmit Data L Wait for I/O Data
Request Data Send Data Reset Request Data
Background Hardware e
Task Monitoring
v Send Data X v Send Data
1/0 Controll Pack Received Transmit on Pack Received
ontrofler Data External /0 Data

Fig. 2 FCC task overview
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Fig. 3 Flight control system functional overview

request of the data received from the I/O processors during the last
cycle. A discrete 1/O is toggled, which triggers transmission of data
via the Ethernet connections. The data is sent via a given custom
Ethernet protocol, which uses only OSI layer one and two. The
main controller executes a busy wait for fixed time until all
Ethernet packages are received. The wait time is based on a worst-
case consideration of the I/O controller. This approach will lead to
a slight loss in performance, as the overall worst-case for the I/O
controller might not occur in a certain system. On the other hand,
the verification of the I/O controller is independent from a specific
use case and can be reused for different systems. Therefore, the
development and verification effort can be reduced significantly
over the different projects. After the reception, all data are
extracted from the Ethernet protocol. Then the data is forwarded to
the flight control functions by assigning the content of all messages
to the corresponding interface variable of the Simulink model. The
interface is defined in interface control documents (ICDs) during
the design phase. ICDs are parsed by a custom code generator,
which then generates the C functions to extract the individual
values and scales them before they are assigned to the interface
variables. This automatic code generation enables fast adaption to
different system architectures, in which the FCC is integrated. The
data provided to the Simulink model is mainly the sensor data and
the controller commands. To enable the functional input
monitoring to check when messages are updated, a counter is
created for each input message indicating, in which period the
message was received. After all input data has been assigned, flight
control algorithms are called. The developed controllers are all
included in a single top model, which consists of several referenced
sub-models. During code generation, this top model including all
references is transferred to C source code. Therefore, only one-step
function of the integration model needs to be called in the target
code to execute the cyclic part of the model.

Subsequent to the calculation of the Simulink functionalities,
the data marked to be sent are scaled and packed into the
corresponding messages. This is again performed by source code,
automatically generated with the ICDs as input. As last step in the
foreground task, these messages are packed into the Ethernet
protocol and are transmitted to the I/O processors.

3.2 Function overview

The developed system implements flight control functions
necessary for a completely automatic operation of an aircraft. An
overview of the system is given in Fig. 3. Modularity of the
controller allows flexible adaption of the software for multiple
applications. Functionality can easily be added or removed. For
example, the system for the German Aerospace Centre does not
include the trajectory mode because this part is implemented in the
external flight management system [6].

The input processing is the first computation step performed in
each software frame. In this block, the sensor and command data
are consolidated and monitored. The valid signals are mapped to
internal data busses of the integration model. As the monitoring
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and validation of signals is dependent on the performance of the
sensor and the number of available sensors, this block is platform
specific and is replaced for each project. Based on the command
inputs, the system automation determines, which controller modes
must be activated. In case the commands are not available, for
example during link loss, emergency procedures are also activated
by the system automation. A detailed description of the system
automation can be found in [21]. Based on waypoints, the
trajectory generation module calculates a flight path that can be
achieved by the applicable aircraft, and calculates the deviations
between the actual aircraft position and the desired trajectory [22].
As the computations of the generation module are based on
geometric considerations, multiple trigonometric functions are
called within this submodule. For automatic take-oftf and landing
(ATOL), a special mode selection logic is introduced. Owing to the
low height above ground level, special fault detection and
diagnostics are active during these flight phases. The result of the
diagnostics is then used to automatically trigger the necessary
flight controllers to execute the desired manoeuvre or to execute a
safe abort or go-around [23]. The auto flight module consists of
two parts. One part provides classical autopilot function like
heading hold, altitude hold or speed control [7], and the other one
is a special controller for the trajectory mode. This controller
reduces the deviations of the actual aircraft position to the
calculated trajectory to zero [24]. Both controllers are based on the
concept of non-linear dynamic inversion [25, 26] and comprise
scheduled limits and gains to obtain consistent performance over
the whole flight envelope. The auto flight controllers provide load
factor commands to the inner loop and auto thrust controller. These
controllers are specific for each platform. Based on the load factor
in direction of the flight path, the auto thrust controller commands
the actual trust setting. The inner loop controller transforms the
load factors normal to the flight path into deflections of the control
surfaces. Here, the controller is designed as linear multiple-input-
multiple-output controller, where limits and gains are scheduled
over airspeed and static pressure to ensure performance and
margins for the permissible flight envelope. After the control
surfaces deflections are calculated, the output processing performs
the transformation of the model internal signals to the signals
specific for the messages of the applicable architecture. For all
scheduled gains and limits, lookup tables are used which use a
binary search algorithm.

3.3 Model-based developed process

In difference to other approaches, e.g. [14], in this case study the
same model is used throughout the whole development lifecycle.
So the model, which is used for the controller design, is also
transformed automatically to C source code and is afterwards
deployed to the embedded target. If only one model that is not
transformed into another model or modelling language is used, no
errors can be introduced in those transformation steps. Simulink
was selected, because the tool is quite familiar to most control
engineers, and MathWorks toolboxes offer various possibilities for
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Table 1 WCET analysis and measurement results
Non-optimising Optimising compiler

compiler (GCC) (CompCert)
no EC optimisation case GO case CO
EC optimisation case G1 case C1

Table 2 Selected optimisation settings

Option No EC EC optimisation
optimisation case case *1
*0
conditional input branch Off On
execution
signal storage reuse On On
enable local block On On
outputs
eliminate superfluous Off On
local variables (expression
folding)
reuse local block outputs Off On

simulation and development of control algorithms. The allowed
blocks were limited, and a special configuration setting was
introduced to take the benefit of automatic code generation that can
be verified by tools. The main reason for this limitation is the use
of the Simulink Code Inspector [27], a tool that can show
compliance between the model and the generated source code. The
impact of the applied limitation was acceptable for the controller
design engineers. A more detailed view on the model-based
development process is given in [28].

4 Software integration

In this section, the software integration incorporating the auto code
generation and compilation is described. All considered
optimisation techniques are applied in this process step. As shown
in Table 1, four variants of the software are considered.

4.1 Auto code generation

To generate C source code from the model, the EC from
MathWorks is used. As stated in Section 3.3, the code generation
shall be compatible to the Simulink Code Inspector. This limits the
number of allowable coder optimisation settings, but still some
settings that apply execution time optimisations can be used
without restrictions. The optimisation methods applied here are
available in EC. The impact of the most important remaining
settings shall be analysed. Therefore, two variants of the auto code
with different optimisation settings are examined. These are listed
in Table 2.

The non-optimising setting of Table 2 still enables the ‘signal
storage reuse’ and ‘enable local block outputs’. If local block
outputs are not enabled, all local signals are written into a global
structure by EC. This leads to a huge amount of unaligned
accesses, which impede WCET analysis as discussed in Section 7.
With both options selected, the local signals are kept in the local
scope of the function as separate local variables. The signal storage
reuse is selected because the enable local block outputs is
dependent on this option.

The meaning of the options selected for the optimising version
is described as follows:

» Conditional input branch execution: Simulink executes only
blocks that compute the control input and data input that the
control input selects. This optimisation improves execution
speed [9].

* Eliminate superfluous local variables (expression folding): more
blocks are collapsed to one single statement. The efficiency of
the code is improved [9].

* Reuse local block outputs: Local variables will be reused [9].
This mainly reduces the necessary memory consumption of the
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stack. With a lower memory consumption, the cache misses
might decrease and, therefore, this feature has potentially impact
on the execution timing.

4.2 Compilation

For compilation, GNU GCC or CompCert is used. GCC is used for
the non-optimised cases (Cases G*) and CompCert for the
optimised cases (Cases C*). The manual code and the auto-
generated code are compiled and linked in one process step.
Therefore, one executable with the same compiler settings for all
parts is generated.

To ensure the confidence in correctness of the compilation in
cases with GCC, optimisation is completely turned off (setting -
00). This configuration is also beneficial in case of a DAL A
development, where the structural coverage has to be verified
based on executable object code.

To accelerate the execution time while keeping confidence in
the correctness of the compilation process, the optimising compiler
CompCert [29] is evaluated in this paper. The benefit of CompCert
is that a formal specification is available for this compiler and the
optimisations are proved against this specification. Due to the
formal verification, the compiler does not support all statements of
the C language. It only supports the so-called Clight subset [30].
When Clight is compared with the subsets of C that are allowed for
safety critical application as in [31], this restricted language set was
no problem in this project. The complete auto-generated code of
EC was compatible to the language set of the CompCert. To prove
the correctness of the compilation, the compilation is performed
using several intermediate languages. The optimisations performed
by CompCert are basic methods, which are also implemented in
other compilers. The following methods are applied [32]:

* instruction selection to take advantage of combined instructions
* constant propagation

* common subexpression elimination

* dead code elimination

 function inlining

« tail call elimination

« register allocation

5 WCET analysis

Execution times in this paper are assessed for the model-based
developed part. To evaluate the benefit of the applied optimisation
techniques, the execution time is measured during a test in a
hardware in the loop (HIL) environment and a static analysis is
performed to get a safe bound for the worst-case timing. DO-178
explicitly lists the worst-case execution timing as one of the
objectives which need to be fulfilled for DAL A, B and C software
[10]. A concrete method how the worst-case execution timing shall
be determined is not proposed in DO-178, but further information
is given in DO-248 in the answer of FAQ #73 [33]. It states that if
measurements shall be used to gain the WCET, they should be
supported by an analysis to show that the actual worst-case is
measured. Further, it notes that the use of cache leads to a more
complex calculation for the WCET. A more detailed view on using
cache in airborne systems is given in [34]. It is explained that the
execution time depends on the cache content. As the content of the
cache is dependent on the cache management mechanism and the
control flow of the software, these must be considered when the
WCET shall be verified. Using a static analysis of the software,
these effects can be considered and a safe bound for the WCET can
be determined. As the system, which is presented in this paper,
uses both data and instruction cache, the WCET is determined by a
static analysis tool. The analysis is based on the executable object
code and considers the control flow and cache management.
Therefore, the WCET can be evaluated with reasonable effort by
using static analysis.
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5.1 Execution time measurement

For the HIL measurements, the execution time is calculated based
on the internal timers of the main processor and is transmitted via a
special message on the CAN bus. The test case used for the
execution time measurement triggers all operational modes of the
software. The system is operated under normal conditions. This
means that no failures are introduced, e.g. all sensor signals are
within their specified ranges, and no range violations occur. This
leads to some limitations. Branches in the input monitoring of the
software that handle invalid sensor data are not triggered and,
therefore, the measurement might not represent the worst case. Due
to conservative programming, the software has branches which
cannot be triggered from outside of the software and, therefore, the
execution time for these branches will be zero for the HIL
measurements.

5.2 Static WCET analysis

To determine the WCET, in this case study, the tool aiT from
Absint Software [35], which supports the e300 core, was used.
Input to the analysis is the executable object code and potentially
some user annotations containing, e.g. loop bounds, flow facts or
certain register values. As the tool uses the executable object code
and not the source code, effects of the compiler are considered. The
first step in the analysis is the reconstruction of the control flow.
This control flow is then annotated with information needed for the
further steps. The next step is a value analysis, which uses abstract
interpretation. Here ranges of registers are gained in order to
demine infeasible path, addresses of indirect memory access or
bounds of loops. After this process, the cache and pipeline analysis
follows. Abstract interpretation is also used here. As last step
follows the bound analysis in the context of aiT, this is called path
analysis. This step can either be performed using an integer linear
programming (ILP) method, a prediction file-based method or a
combination of both. For further information regarding aiT and the
theoretical background refer to [36, 37]. In this case study, the
analysis was performed using the prediction file-based method for
the path analysis. According to [37], the prediction file-based
method generates the highest precision but requires an acyclic call
graph. To get an acyclic call graph, the option ‘default unroll” had
to be set to a high value. The ‘default unroll’ controls how many
contexts are generated for recursive calls or loops. The alternative
to a prediction file-based path analysis is the ILP method. The
precision for the prediction file-based method is higher because a
global state graph is the basis here; in the ILP case, a local state
graph is used [37]. For the case CO, the analysed WCET is about
37% lower with the prediction file-based path analysis compared
with the ILP method. To determine the loop bounds, some
annotations were necessary. For all variants of the software,
annotations of some basic math functionalities like square root
were necessary, and some so-called shared utils of the EC like the
table lookup algorithms had to be annotated. With the annotation
language of aiT, it is possible to do annotation based on register
values at a given point. This feature was used to annotate the loop
bounds of these functions based on their input values. It allows
keeping the annotations universally valid. Annotations must not be
adapted due to a functional change, e.g. if the number of
breakpoints of a certain table is increased. For the executables
generated with the GCC, no additional annotations were necessary
to avoid unknown memory accesses in the analysis. However, to
get the same result for the executables generated with the
CompCert (Cases C*), an additional annotation was required. The
range of an index of a lookup algorithm directly implemented in
Simulink could not be automatically determined by the value
analysis and, therefore, the value was annotated.

6 Results

In this section, the results of the measurements and analyses are
presented and discussed. Due to the limitations of the measurement
described in Section 5.1, the overestimation in Table 3 has to be
handled with care.
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Table 3 WCET analysis and measurement results

Case Max measured Analysed Overestimation, %
execution time, ms  WCET, ms

GO 9.442 19.249 103.9

(60] 3.569 6.522 82.7

G1 6.826 15.891 132.8

C1 2.897 5.965 105.9

Table 4 Assembler code

Description Cco/C1 GO G1

fmul 5,0,4 fmul 0,13,0 fmul 13,13,0
stfd 0,16(31)
Ilwz 9,28(31) lwz 9,12(31)

execute multiplication
store result of multiplication
load base address of function

parameter

load second operand for Ifd 2,16(4) Ifd 13,16(9) Ifd 0,16(9)
subtraction

load first operand for Ifd 0,16(31)

subtraction

execute subtraction fsub1,5,2 fsub 0,0,13 fsub 0,13,0

The overestimation is higher than the overestimation of the
functional algorithms in [38]. In contrast to [38], a CPU with cache
is analysed here. The cache introduces uncertainties in the analyses
and, therefore, an increased uncertainty was expected. Especially,
the access to large lookup tables has a big impact on the cache in
the analysis. Due to the abstract interpretation of the value analysis,
potentially all data points of the lookup table are accessed in the
analysis. However, during the execution of the program in one
cycle, for a two-dimensional look up table not more than four data
points are actually accessed. For example, the algorithm has
several two-dimensional lookup tables each containing 396
breakpoints. If a value shall be determined based on one of these
lookup tables, maximal four values at breakpoints read in order to
perform the interpolation. Therefore, in the actual execution, a read
operation of these four values will have an impact to not more than
four out of 128 sets of the cache. In the analysis potentially all data
points are accessed. Therefore, a potential impact to 100 out of 128
cache sets has to be considered in the analysis.

In Section 5.1, it is explained that some branches in the input
monitoring and branches due to conservative programming might
not be executed. However, as aiT does not consider floating point
arithmetic in the value analysis, these branches are also considered
in the analysis. Considering these circumstances, the analysis result
of the CompCert variant with 82.7% overestimation can be seen as
a reasonable result. The analyses of [39] with a magnitude of 50%
overestimation are not much lower for a software specifically built
for embedded real-time systems.

In cases applying EC optimisations (Gl and Cl), the
overestimation in those cases is higher. The reason is related to the
conditional input branch optimisation. Instructions that are always
executed in the case of the non-optimised auto code are
encapsulated in conditional statements in case of the optimised
version. As shown in Section 7, the exclusiveness of different
branches might not be analysable with aiT dependent on the way
these conditions are modelled. Therefore, precision is lost in those
cases. The WCET of variant Gl is improved by ~17% in
comparison to GO. This is almost twice as much as for the
CompCert case, since some optimisations performed by the EC
might also be applied in a similar form in the CompCert and,
therefore, they will take no effect in case of a compilation with
CompCert.

In Fig. 4, an example is presented where the EC optimisation
has no impact on the executable generated with CompCert but the
performance of the GCC executable G1 case is enhanced. The code
generated without EC optimisation is listed in Fig. 5 and the code
generated with EC optimisation is listed in Fig. 6. Table 4 shows
the generated assembler code for all cases. Only the code from the
multiplication instruction to the subtraction instruction is listed.
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Fig. 4 Example model to demonstrate the expression folding effect

Subtract

b_a_times_b = expression_folding U->in_a * expression_folding U->in_b;

b_Subtract = b_a_times_b - expression_folding_U->in_c;

expression_folding_Y->out = b_Subtract;

Fig. 5 Code generated from the model shown in Fig. 4 without EC optimisation (comments removed)

expression_folding_Y->out =

(expression_folding_U->in_a *

expression_folding_U->in_b) - expression_folding U->in_c;

Fig. 6 Code generated from the model shown in Fig. 4 with EC optimisation (comments removed)

In case the source code is compiled with optimisation using
CompCert, the generated assembler is identical for both cases.
During the register allocation, it is recognised that the local
variable b_a times b (correlates to the signal a times b in the
Simulink model) is not further used and, therefore, the value is not
written to a local variable at a stack location. In the case the source
code is compiled without optimisation using GCC, the two
generated assembler files differ. For the case GO, the result of the
multiplication is stored at a stack location and reloaded from this
location. For the G1 case where the local variable b_a times b is
eliminated by the EC, the result of the multiplication is directly
used for the subtraction, and the store and load operations are
omitted in the assembler.

7 Correlation between model and WCET analysis

This section exemplarily presents modelling patterns that can be
introduced on model level to improve WCET analysis execution
and get more accurate WCET results. It shall give the reader an
impression on how model patterns may affect abstract
interpretation and which constructs have to be regarded more
closely.

The analysed Simulink model intensively uses Simulink bus
objects, and as the model shall be compliant to the DO-178/
DO-331 workflow of MathWorks, it is not possible to make these
busses virtual in most cases. After the auto code generation, non-
virtual busses are represented as structures in the C code. In some
cases, especially if busses are restructured, this leads to an
extensive amount of non-functional data copies. In a real-time
embedded system, such behaviour should be avoided. However, as
shown before, this can be compensated by the high computational
power of the target hardware.

For the copy of one bus into another, which is in the C source
code an assignment of two structures, both compilers generated
assembler code leading to unaligned memory access. The
unaligned access occurs if more elements of a structure are copied
at once using a bigger data type than the one of the elements. For
example, when a structure that contains two elements each one
byte in size is copied using a read and write of a word. Elements
that are one byte in size do not have a certain alignment restriction,
so the structure containing the elements might start at an odd
address. If the whole structure is accessed using a word specific
instruction, this leads to an unaligned access, because words should
be aligned on even addresses. As the timing penalties for unaligned
access are not documented for the used processor, the calculated
WCET might not be safe. This can be avoided by specifying
predefined alignment of the busses in Simulink, which is
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propagated by the code generator and the compiler. This non-
functional change must be considered by the modeller. Identifying
forced alignment depends on the structure of the busses and the
structure layout algorithm of the compiler. Therefore, the modeller
will have to consider specific information how the compiler works
in order to introduce the alignment information for the necessary
structures. Alternatively, the alignment of busses must be set to a
default value of four, which will lead to an increased memory
consumption.

Furthermore, a model pattern was detected that leads to an
overestimation in the WCET analysis. In case certain
functionalities need only to be calculated at a certain state, these
functionalities are often encapsulated in enabled subsystems. The
same construct is also used in case exclusive functionalities exist.
The problem of this structure is that it is translated into source code
with two independent ‘if” statements. As the aiT WCET tool works
with abstract interpretation [36], the value analysis determines
ranges of variables. This leads to the circumstance that both ‘if’
statements are considered as potentially true and both encapsulated
functionalities are on the WCET path. Depending on the extent of
the subsystems, this might lead to a huge over estimation.

In Fig. 7, an example is presented. The corresponding code is
shown in Fig. 8.

Dependent on the caller of the model, the value analysis will
determine the value of the input flight phase. If both subsystems
are coverable, the result for the flight phase in the value analysis
will at least be [0 ... 1] (as landing phase corresponds to 0 and
takeoff phase to 1). This leads to the fact, that both if statements at
the beginning of the enabled subsystems will evaluate to true in the
WCET analysis.

To get a more precise result in the WCET analysis, multiple
approaches exist. The first possible approach would be to work
with annotation for the WCET tool [25]. The value of the variable
flight phase can be annotated and then for each flight phase an
analysis can be executed. Afterwards the highest value of all
analysis must be selected which is the WCET of the complete
software. An alternative to this is a trace annotation. With such an
annotation for each called subroutine, an extra context can be
created within the calling function. Then the worst case would be
selected during the path analysis. A flow constraint can also be
introduced as annotation to the WCET analysis. This would restrict
the possible path variant analysis methods. A pure prediction file-
based analysis would not be possible.

For all those solutions, additional annotations would be
necessary for the WCET analysis. Such annotations can either be
done manually, which would lead to a huge effort, or automatically
by analysing the Simulink model and writing a custom code
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Fig. 7 Exclusive enabled subsystems
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}

}

if (enabled_subsystem_U->flight_phase == landing_phase) {
landing(&enabled_subsystem_U->sensor_data, &enabled_subsystem_B->landing_cmd);

if (enabled_subsystem_U->flight_phase == takeoff_phase) {
takeoff(&enabled_subsystem_U->sensor_data, &enabled_subsystem_B->takeoff_cmd);

Fig. 8 Code generated from the model shown in Fig. 7 (comments removed)

case [ landing_phase ]:
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SwitchCase

D
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Fig. 9 Switch-case subsystems
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i - - <takeoff_cmd> CD
takeoff_cmd
takeoff

switch (IfElse_subsystem U->flight phase) {

case landing_phase:

landing(&IfElse_subsystem_U->sensor_data, &IfElse_subsystem_B->landing_cmd);

break;

case takeoff_phase:

takeoff(&IfElse_subsystem_U->sensor_data, &IfElse_subsystem_B->takeoff_cmd);

break;

}

Fig. 10 Code generated from the model shown in Fig. 9 (comments removed)

generator. An attempt to automate this process is presented in [40].
If the automatically generated annotations will not be reviewed
manually, the generator needs to be qualified. Both variants lead to
a huge effort. Thus, the model and code should be restructured in
order to omit such effort. The goal is to get structures where the
exclusive functionalities are represented in code constructs such as
switch-case or if-else constructs. Then aiT can determine the
correct control flow without any further annotations. Restructuring
the model can also be beneficial for other process steps that also
rely on abstract interpretation. For example, a static code analysis
in order to detect runtime errors.
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Fig. 9 shows a restructured model. With this model, an
exclusive switch-case statement is generated in the code as shown
in Fig. 10.

Restructuring the trajectory sub-model, where enabled
subsystems were frequently used, reduced the calculated WCET by
44%. This shows that a good software architecture must be chosen
if tight WCET bounds shall be achieved without further analysis of
the design model for control flow constraints. It is important that
the modeller knows what code constructs are generated out of
certain model constructs by the used code generator.
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8 Conclusion

This paper shows that it is possible to get a safe execution time
bound for software, which is generated out of a Simulink model
developed during system development. To get tight bounds for the
analysed WCET without a huge effort in the analysis, exclusive
parts of the model must be implemented in exclusive code
constructs. To achieve this goal, the modeller must be aware of
model structures that lead to such constructs. The usage of the
CompCert leads to a huge improvement in the execution time in
comparison to the non-optimised compilation. The benefit here is
bigger than applying optimisations during the auto code generation.
The most significant improvement can be achieved if both
optimisations are applied. In future work, it shall be investigated if
it is possible to improve the precision of the WCET in case of
applied optimisation during the auto code generation. Further
topics of future work are to investigate how the formal proofs of
the compiler can be beneficial in a certification process, and how to
close the gaps in the non-formally proven process steps like the
pre-processor. Further, it shall be analysed if it is possible to
perform all necessary verification activities with the model
developed during system development process. The necessary
activities depend on the benefit, which can be taken from the
formally proven compiler and the possibility to automatically
inspect the source code for compliance with the Simulink model.
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