
Contemporary safety standards (DO-178B, DO-178C, IEC-61508, ISO-26262,
EN-50128, etc.) require identifying potential functional and non-functional ha-
zards and demonstrating that the software does not violate the relevant safety
goals.
Especially for non-functional program properties – timing, memory usage, absence
of runtime errors – tests and measurements can be ineffective, inefficient, and ex-
pensive: identifying safe end-of-test criteria is typically undecidable since failures
usually occur in corner cases and full test coverage cannot be achieved.

Abstract interpretation based program analysis tools like aiT, StackAnalyzer, and
Astrée provide a solution to this problem. Static program analysis is a widely
used technique to automatically determine runtime properties of a given program
without actually executing it. Abstract interpretation is a semantics based frame-
work for static program analysis that enables the systematic derivation of provably
correct analyses: Astrée never fails to report a potential runtime error, aiT never
under-estimates the worst-case execution time, StackAnalyzer never under-
estimates the worst-case stack usage.

All tools can be smoothly integrated in the development process to detect bugs and
errors early when the costs for a fix are lowest and the benefit highest. Dedicated
plugins provide a seamless integration in continuous integration frameworks and
model-based code generators.

Certification and Qualification

Abstract interpretation based tools like aiT, StackAnalyzer, and Astrée are formal
verification tools providing 100% complete and reliable results and are therefore
perfectly suited to be used for certification.

The tool qualification process is widely simplified by qualification support kits
(QSKs). They specify the tool requirements and the verification test plan and con-
tain an extensible test package. They also provide scripts to execute all test cases
and to evaluate and document the results. AbsInt‘s tool development and software
quality process is detailed in a Qualification Software Life Cycle Data report.

Abstract Interpretation

Safety and Efficiency.
A l w a y s o n t h e s a f e s i d e w i t h A b s I n t

AbsInt Angewandte Informatik GmbH

Tel.: +49 681-383-600
Fax: +49 681-383-6020
info@AbsInt.com
www.AbsInt.com

verification tool technology

www.AbsInt.com

Founded in 1998, AbsInt is a privately-held company located in
Saarbrücken, Germany.
AbsInt provides advanced development tools and tools for valida-
tion, verification, and certification of safety-critical software.

AbsInt‘s tools are designed to:
 enhance software safety,
 speed up time-to-market,
 lower testing and validation costs,
 improve software efficiency.

Consultancy and Services
AbsInt offers consultancy and services in the areas of program
analysis, compiler technology, and program validation and veri-
fication. AbsInt‘s specialists perform code analyses of your soft-
ware projects as a service according to your requirements.

Customers
Our customers belong to the most respected and innovative com-
panies from avionics, automotive, railway, energy, communica-
tion, and healthcare technology sectors.

AbsInt‘s tools are used to validate safety-critical software and to
optimize embedded applications. Software products optimized and
validated by AbsInt‘s tools are in daily use by millions of people.

2

Astrée

did you fix all...
verifying the absence of runtime errors

Astrée finds all potential runtime errors in C programs. Examples are division
by zero, invalid pointer accesses, overflows, data races, and deadlocks. Additi-
onally, Astrée can prove user-defined assertions and detects unreachable code,
non-terminating loops, and accesses to shared variables. Floating-point rounding
errors are precisely taken into account.

Astrée automatically takes the OS configuration of ARINC-653, OSEK, and AUTO-
SAR projects into account and can precisely analyze all potential interactions
between concurrent threads.

Astrée offers a rule checker which can check for violations of coding rules, sup-
porting MISRA C:2004, MISRA C:2012 incl. Amendment 1, SEI CERT C, CWE,
and ISO/IEC 17961:2013.

Astrée is sound. If the analysis does not detect any errors, the absence of runtime
errors has been proven.

Astrée has been used successfully to analyze large-scale safety-critical software
with zero false alarms.

CompCert

you can trust...
verified compilation

CompCert is a formally verified optimizing C compiler. Its intended use is compiling safety-
critical and mission-critical software written in C and meeting high levels of assurance.

Unlike any other production compiler, CompCert is formally verified, using machine-assisted
mathematical proofs, to be exempt from miscompilation issues. In other words, the code
it produces is proved to behave exactly as specified by the semantics of the source C
program.

“The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent. As of early 2011, the under-development version of CompCert
is the only compiler we have tested for which Csmith cannot find wrong-code errors.”

Excerpt from: Yang, Chen, Eide, and Regehr. Finding and understanding bugs in C compilers. PLDI 2011

Using the CompCert C compiler is a natural complement to applying formal verification
techniques (static analysis, program proof, model checking) at the source-code level. The
correctness proof of CompCert guarantees that all safety properties verified on the source
code automatically hold for the generated code as well.

Timing Tools

is your program...

... fast enough?

timing verification - timing optimization

aiT WCET Analyzers statically compute tight bounds for the worst-case execu-
tion time (WCET) of tasks in real-time systems. aiT statically analyzes a task’s
intrinsic cache and pipeline behavior based on formal cache and pipeline models.
This enables correct and tight upper bounds to be computed for the worst-case
execution time. These bounds are valid for all inputs and each execution of a task.
The correct timing behavior can be guaranteed.

TimeWeaver computes worst-case execution time estimates based on real-time
traces. TimeWeaver combines observed code snippet execution times with aiT’s
method to compute longest execution paths.

TimingProfiler statically computes worst-case execution time estimates without
the need to repeatedly provide test inputs, execute, and measure. TimingProfiler
helps you to identify application parts that cause unsatisfactory execution times. It
can be used very early in the development process, when measurements on physi-
cal hardware are costly or plain impossible. A typical use is constantly monitoring
timing behavior during software development.

StackAnalyzer

now a thing of
the past:

stack overflow

memory usage validation

StackAnalyzer automatically determines the worst-case stack usage of the tasks
in safety-critical applications. The analysis results are valid for all inputs and each
task execution.

Stack memory has to be allocated statically by the programmer. Underestimating
stack usage can lead to serious runtime errors which can be difficult to find.

StackAnalyzer directly analyzes binary executables, exactly as they are executed
in the final system, and takes the effect of all assembly code, library functions,
function pointers, and recursions into account.

... your
compiler!

... runtime
errors?

