aiT Worst-Case Execution Time Analyzer
Timing Validation for Real-Time Systems

aiT WCET Analyzer computes **tight bounds** for the worst-case execution time of tasks in safety-critical systems. These bounds are **safe**, i.e., they are valid for any input scenario and each task execution.

aiT is based on statically analyzing a task’s intrinsic **cache and pipeline behavior**, thus enabling the development of complex hard real-time systems on state-of-the-art hardware.

The Challenge:

- **Measuring** the execution time of a task is typically **not safe**. It is often impossible to prove that all the conditions determining maximum execution time are taken into account. Instrumentation and debug information change the timing behavior.

- Analysis methods that do not consider **cache and pipeline behavior** typically seriously overestimate the WCET.

- **Switching off** instruction and data caches to simplify WCET prediction can lead to severe performance degradation (by a factor of up to 30 for the PowerPC 604, according to a study by EADS).

This is where aiT steps in:

- aiT-computed bounds are **valid for all inputs** and each execution of a task. Extensive timing testing is now a thing of the past.

- aiT directly analyzes binary executables. This means that **no modification of your tool chain** or the program's operational behavior and performance is required.

- aiT-computed bounds are tight and reflect the **real performance** of your system. Cache and pipeline effects are fully taken into account. Ensuring deadline adherence is no longer done at the expense of hardware resources.
aiT Features:

- **Visualization** of the call and control flow graph of the application. The illustration shows the critical path and the contribution of each function to the overall worst-case execution time. Developers can quickly identify those program parts relevant for optimizing worst-case timing behavior.

- Visualization of the machine states at different program points. Developers get an in-depth analysis of the reason of performance effects which provides valuable hints for **timing optimization**.

- Qualification Support Kits are available providing support for automatic **tool qualification** up the highest criticality levels (e.g. wrt. DO-178B, ISO-26262, IEC-61508, EN-50128).

- Support for **sophisticated hardware components**, like superscalar, out-of-order execution pipelines, branch prediction units, instruction and data caches, etc.

- **Flexible annotation mechanism.** Developers can provide programmer-specific knowledge to aiT to further improve the analysis precision.

- aiT can be coupled with **model-based code generators** and **system-level scheduling tools** via an open XML-based interface to provide timing information in the development phase.

- **Graphical comparison of different analysis runs.** Developers can quickly understand the effect of program modifications on worst-case timing.

Why do you need aiT?

The worst-case execution time of each task in a real-time system has to be known prior to its execution. In event-triggered or periodic systems (e.g. RMA) the WCET is required for schedulability analysis; in time-triggered systems (e.g. TTA, FlexRay, ...) it is required for determining a static schedule.

The increasing performance of microcontrollers enables more and more functionality to be implemented by a single embedded control unit. The software is complex and the timing behavior of the interacting software components rarely known. Typically it is not practical – or even possible – to test the system with all potential inputs.

- aiT can replace error-prone methods based on tests and measuring. Thus, **enhancing safety**.

- aiT has been qualified as a validation tool according to DO-178B, up to Level A. Thus, allowing to **certify safety-critical real-time software**.

- aiT provides automatic tool support for calculating the WCET of your applications. Thus, **saving development time**.

- aiT determines the timing behavior of interacting software components. Thus, **enabling software integration**.