
www.embedded-world.eu

 Obtaining Worst-Case Execution Time Bounds on

Modern Microprocessors

Daniel Kästner, Markus Pister, Simon Wegener, Christian Ferdinand

AbsInt GmbH

D-66123 Saarbrücken, Germany

info@absint.com

Abstract—Many embedded control applications have real-

time requirements. If the application is safety-relevant, worst-

case execution time bounds have to be determined in order to

demonstrate deadline adherence. If the microprocessor is timing-

predictable, worst-case execution time guarantees can be

computed by static WCET analysis. For high-performance multi-

core architectures with degraded timing predictability, WCET

bounds can be computed by hybrid WCET analysis which

combines static analysis with timing measurements. This article

summarizes the relevant criteria for assessing timing pre-

dictability, gives a brief overview of static WCET analysis and

focuses on a novel hybrid WCET analysis based on non-intrusive

real-time instruction-level tracing.

Keywords— worst-case execution time, static analysis, real-time

tracing, timing predictability, path analysis, functional safety

I. INTRODUCTION

In real-time systems the overall correctness depends on the
correct timing behavior: each real-time tasks has to finish
before its deadline. All current safety standards require reliable
bounds of the worst-case execution time (WCET) of real-time
tasks to be determined.

With end-to-end timing measurements timing information
is only determined for one concrete input. Due to caches and
pipelines the timing behavior of an instruction depends on the
program path executed before. Therefore, usually no full test
coverage can be achieved and there is no safe test end criterion.
Techniques based on code instrumentation modify the code
which can significantly change the cache and pipeline behavior
(probe effect): the times measured for the instrumented
software do not necessarily correspond to the timing behavior
of the original software.

One safe method for timing analysis is static analysis by
Abstract Interpretation which provides guaranteed upper
bounds for WCET of tasks. Static WCET analyzers are
available for complex processors with caches and complex
pipelines, and, in general, support single-core processors and
multi-core processors. A prerequisite is that good models of the
processor/System on-Chip (SoC) architecture can be
determined. However, there are modern high performance
SoCs which contain unpredictable and/or undocumented
components that influence the timing behavior. Analytical
results for such processors are unrealistically pessimistic.

A hybrid WCET analysis combines static value and path
analysis with measurements to capture the timing behavior of
tasks. Compared to end-to-end measurements the advantage of
hybrid approaches is that measurements of short code snippets
can be taken which cover the complete program under analysis.
Based on these measurements a worst-case path can be
computed. The hybrid WCET analyzer TimeWeaver avoids the
probe effect by leveraging the embedded trace unit (ETU) of
modern processors, like Nexus 5001™ [16], which allows a

fine-grained observation of a core’s program flow.
TimeWeaver reads the executable binary, reconstructs the
control-flow graph and computes ranges for the values of
registers and memory cells by static analysis. This information
is used to derive loop bounds and prune infeasible paths. Then
the trace files are processed and the path of longest execution
time is computed. The computed time estimate provide
valuable feedback for assessing system safety and for
optimizing worst-case performance. TimeWeaver also provides
feedback for optimizing the trace coverage: paths for which
infeasibility has been proven need no measurements; loops for
which the analyzed worst-case iteration count has not been
measured are reported.

In this article we give an overview of timing predictability
in general and provide criteria for selecting suitable WCET
analysis methods. We will outline the methodology of hybrid
WCET analysis and report on practical experience with the tool
TimeWeaver.

II. TIMING PREDICTABILITY

In general, a system is predictable if it is possible to predict
its future behavior from the information about its current state.
We consider predictability under the assumption that the
hardware works without unexpected errors. Hardware faults
like soft errors or transient faults have to be addressed by
specific error handling mechanisms to ensure overall system
safety.

In [4] the program input and the hardware state in which
execution begins are identified as the primary sources of
uncertainty in execution time. Hardware-related timing
predictability can be expressed as the maximal variance in
execution time due to different hardware states for an arbitrary
but fixed input. Analogously, software-related timing
predictability corresponds to the maximal variance in
execution time due to different inputs for an arbitrary but fixed

hardware state. A basic assumption is uninterrupted program
execution without interferences. In a concurrent system,
interferences due to concurrent execution additionally have to
be taken into account.

To ensure the correct timing behavior it is necessary to
demonstrate the deadline adherence of each task. To this end,
the worst-case execution time of each task has to be
determined, i.e. the concept of software-related predictability
as defined above can be reduced to the predictability of the
worst-case execution path.

This leads to the following two main criteria for execution
time predictability:

• It must be possible to determine an upper bound of the
maximal execution time which is guaranteed to hold.

• To enable precise bounds on the maximal execution time to
be determined the behavioral variance, i.e. the maximal
variance in execution time due to different hardware states,
has to be as low as possible. In general, the larger the
behavioral variance is

o the more the execution time depends on the execution
history,

o the less meaningful is one particular execution time
measurement in a specific execution context, and

o the larger can be the gap between the largest measured
execution time and the true worst-case execution time.

Even in single-core processors timing predictability is
compromised by performance-enhancing hardware
mechanisms like caches, pipelines, out-of-order execution,
branch prediction and other mechanisms for speculative
execution, which can cause significant variations in timing
depending on the hardware state. Interestingly hardware
speculation has recently been discovered to constitute a critical
security vulnerability [21, 19].

For multi-core processors all challenges to timing
predictability are relevant that apply to single-core processors.
In addition, there are new challenges imposed by the multi-core
design. In the following we will first discuss timing
predictability on single-core processors and then address
specific challenges for multi-core processors.

A. Single-Core Processors

For simple non-pipelined architectures adding up the
execution times of individual instructions is enough to obtain a
bound on the execution time of a basic block. However,
modern embedded processors try to maximize the instruction-
level parallelism by sophisticated performance-enhancing
features, like caches, pipelines, or speculative execution.
Pipelines increase performance by overlapping the executions
of consecutive instructions. For timing measurements this
means that there may be big variations between the execution
times measured with different starting states of the hardware.
Furthermore there may be a significant gap between the largest
measured execution time and the true worst-case execution
time. For a timing analyzer it means that it is not feasible to
consider individual instructions in isolation. Instead, they have
to be analyzed collectively—together with their mutual

interactions—to obtain tight timing bounds. In the following
we will give an overview of timing-relevant hardware features
and discuss their effect on timing measurements and on static
analysis methods.

In general, the challenges for timing analysis of single-core
architectures originate from the complexity of the particular
execution pipeline and the connected hardware devices.
Commonly used performance-enhancing features are caches,
pipelines, out-of-order execution, speculative execution
mechanisms like static/dynamic branch prediction and branch
history tables, or branch target instruction caches. Many of
these hardware features can cause timing anomalies [29] which
render WCET analysis more difficult. Intuitively, a timing
anomaly is a situation where the local worst-case does not
contribute to the global worst-case. For instance, a cache miss
—the local worst-case—may result in a globally shorter
execution time than a cache hit because of hardware scheduling
effects. In consequence, it is not safe to assume that the
memory access causes a cache miss; instead both machine
states have to be taken into account. An especially difficult
timing anomaly are domino effects [22]: A system exhibits a
domino effect if there are two hardware states s, t such that the
difference in execution time (of the same program starting in s,
t respectively) may be arbitrarily high. E.g., given a program
loop, the executions never converge to the same hardware state
and the difference in execution time increases in each iteration.
In consequence, loops have to be analyzed very precisely and
the number of machine states to track can grow high. For
timing measurements this means that the difference between
measured and true worst-case execution time caused by an
incomplete hardware state coverage can grow arbitrarily high.

The article [37] categorizes the timing compositionality of
computing architectures according to the presence of timing
anomalies. Fully compositional architectures, such as the
ARM7, contain no timing anomalies; individual components,
e.g., basic blocks, can be considered separately and their worst-
case information can be combined. Compositional architectures
only contain bounded timing effects, i.e., additional delays
(e.g., due to an access to a shared resource or due to a
preemption or interrupt) can be bounded by a constant and
added to the local worst-case figures (e.g. TriCore 1797). Non-
compositional architectures contain domino effects, i.e.,
unbounded anomalies (e.g. PowerPC 755). Depending on the
state of the pipeline and the predictors, the occupancy of
functional units, and the contents of the caches—i.e., the
execution history—an instruction needs only a few or several
hundred cycles to complete its execution [8]. A rigorous
definition of compositionality is given in [14].

As the runtime of embedded control software often is
dominated by load/store operations, memory subsystems
nowadays introduce queues before the caches to buffer them
and overcome early stall conditions like cache misses. Often
this is complemented by fast data forwarding for consecutive
accesses into cache lines that have already been requested by
previous pending instructions, where the requested data might
already be present in the core. This helps to reduce the number
of transactions over the slow system bus. In the abstract model
of the timing analysis, the representation of these hardware
features has to be close to the concrete hardware to achieve

www.embedded-world.eu

satisfactory analysis precision. Due to their size, especially the
dynamic branch prediction and the branch history tables
consume a significant number of bits in the abstract state
representation which increases the memory consumption of the
analysis. Unknown or not precisely known effective addresses
of memory requests further increase the timing analysis search
space due to the number of possible scenarios (cache hit/miss,
fast data forward or not, …). Concerning processor caches,
both precision and efficiency depend on the predictability of
the employed replacement policy [28, 8]. The Least-Recently-
Used (LRU) replacement policy has the best predictability
properties. Employing other policies, like Pseudo-LRU
(PLRU), or First-In-First-Out (FIFO), or Random, yield less
precise WCET bounds because fewer memory accesses can be
precisely classified. Furthermore, the efficiency degrades
because the analysis has to explore more possibilities. Another
deciding factor is the write policy. Typically, there are two
main options: write-through where a store is directly written to
the next level in the memory hierarchy, and write-back where
the data is written into the next hierarchy level if the concrete
memory cell is evicted from the cache. The write-back policy
induces timing uncertainty because the precise point in time
when the write-back occurs is hard to predict; for example, it
might happen after a task switch and slow down a different
(and possibly higher-priority) task than the one that issued the
store operation in the first place. Another timing analysis
challenge is to model processor external devices which are
typically connected with the caches over the system bus. Such
devices are memory controllers for static (SRAM, Flash) or
dynamic memory (DRAM, DDR or QDR) or controllers for
system communication (CAN, FlexRay, AFDX). The
corresponding bus protocol and memory chip timing have to be
modeled precisely.

Individually, each of the above features can be modeled
without complexity problems. Only their combination can
actually result in a large number of possible system states
during the abstract simulation of a basic block. Smart system
configurations as described in [18] can decrease both the
execution time variability and the analysis complexity. In
consequence, the complexity of timing analysis decreases such
that highly complex processors like the Freescale PowerPC
7448 can be handled. At the same time the accuracy of timing
measurements will be improved.

Some events in modern architectures are either
asynchronous to program execution (e.g., interrupts, DMA) or
not predictable in the model (e.g., ECC errors in RAM or some
hardware exceptions). Their effect on the execution time has to
be incorporated externally, i.e., by adding penalties based on
the worst-case occurrence of the events to the computed
WCET, or by statistical means.

B. Multi-Core Processors

Whereas timing analysis of single-core architectures
already is quite challenging, the timing behavior of multi-core
architectures is even more complex. A multi-core processor is a
single computing component with two or more independent
cores; it is called homogeneous if it includes only identical
cores, otherwise it is called heterogeneous. Thus, all
characteristic challenges from single-cores are still present in

the multi-core design, but the multiple cores can independently
run multiple instructions at the same time. Some multi-core
processors can be run in lockstep mode where all cores execute
the same instruction stream in parallel. This typically
eliminates interferences between the cores, so from a timing
perspective the processor behaves like a single-core.

When the processor is not run in lockstep mode, the inter-
core parallelism becomes relevant. To interconnect the several
cores, buses, meshes, crossbars, and also dynamically routed
communication structures are used. In that case, the
interference delays due to conflicting, simultaneous accesses to
shared resources (e.g. main memory) are the main cause of
imprecision. On a single-core system, the latency of a memory
access mostly depends on the accessed memory region (e.g.
slow flash memory vs. fast static RAM) and whether the
accessed memory cell has been cached or not. On a multicore
system, the latency also depends on the memory accesses of
the other cores, because multiple simultaneous accesses might
lead to a resource conflict, where only one of the accesses can
be served directly, and the other accesses have to wait. The
shared physical address space requires additional effort in order
to guarantee a coherent system state: Data resident in the
private cache of one core may be invalid, since modified data
may already exist in the private cache of another core, or data
might have already been changed in the main memory. Thus,
additional communication between different cores is required
and the execution time needed for this has to be taken into
account. Multi-core processors which can be configured in a
timing-predictable way to avoid or bound inter-core
interferences are amenable to static WCET analysis [18, 36].
Examples are the Infineon AURIX TC275 [17], or the
Freescale MPC 5777.

The Freescale P4080 [13] is one example of a multicore
platform where the interference delays have a huge impact on
the memory access latencies and cannot be satisfactorily
predicted by purely static techniques. It consists of eight
PowerPC e500mc cores which communicate with each other
and the main memory over a shared interconnect, the CoreNet
Coherency Fabric. The main problem for static analysis
approaches is that the publically available documentation about
the CoreNet is not enough to statically predict its behavior.
Nowotsch et al. [24] measured maximal write latencies of 39
cycles when only one core was active, and maximal write
latencies of 1007 cycles when all eight cores were running.
This is more than 25 times longer than the observed best case.
A sound WCET analysis must take the interference delays into
account that are caused by resource conflicts. Unless
interference is avoided by means of the overall software
architecture, ignoring these delays might result in
underestimation of the real WCET whereas assuming full
interferences at all times might result in huge overestimation.

To improve predictability of avionics systems the
Certification Authorities Software Team (CAST) [5] advocates
to either deactivate or control existing interference channels. If
deactivation is not possible the software architecture has to be
able to prevent or bound the interferences. One hardware
element where such mechanisms are required is the
interconnect, i.e., the Network-on-Chip (NoC) or shared bus
connecting main memory to the individual cores. Several

approaches to address interference on shared memory accesses
have been discussed in literature, most of them in the context
of Integrated Modular Avionics (IMA). They typically rely on
a time-triggered static scheduling scheme, e.g., corresponding
to the avionics standard ARINC 653. As an example, with the
approaches of [30] or [24] precise static WCET bounds can be
computed, albeit at the cost of high computational complexity.
For systems which do not implement such rigorous software
architectures or where the information needed to develop a
static timing model is not available, hybrid WCET approaches
are the only solution.

III. WCET GUARANTEES ON PREDICTABLE PROCESSORS

The most successful formal method for WCET computation
is Abstract Interpretation-based static program analysis. Static
program analyzers compute information about the software
under analysis without actually executing it. Semantics-based
static analyzers use an explicit (or implicit) program semantics
that is a formal (or informal) model of the program executions
in all possible or a set of possible execution environments.
Most interesting program properties—including the WCET—
are undecidable in the concrete semantics. The theory of
abstract interpretation [6] provides a formal methodology for
semantics-based static analysis of dynamic program properties
where the concrete semantics is mapped to a simpler abstract
model, the so-called abstract semantics. The static analysis is
computed with respect to that abstract semantics, enabling a
trade-off between efficiency and precision. A static analyzer is
called sound if the computed results hold for any possible
program execution. Applied to WCET analysis, soundness
means that the WCET bounds will never be exceeded by any
possible program execution. Abstract interpretation supports
formal soundness proofs for the specified program analysis.
Like model checking and theorem proving, it is recognized as a
formal method by the DO-178C and other safety standards (cf.
Formal Methods Supplement [26] to DO-178C [27]). It is
based on a mathematically rigorous concept and provides the
highest possible confidence in the correctness of the results (cf.
IEC-61508, Ed. 2.0 [15], Table C.18).

In addition to soundness, further essential requirements for
static WCET analyzers are efficiency and precision. The
analysis time has to be acceptable for industrial practice, and
the overestimation must be small enough to be able to prove
the timing requirements to be met.

Over the last few years, a more or less standard architecture
for timing analysis tools has emerged [9, 11]. It neither requires
code instrumentation nor debug information and is composed
of three major building blocks:

• control-flow reconstruction and static analyses for control
and data flow,

• micro-architectural analysis, computing upper bounds on
execution times of basic blocks,

• path analysis, computing the longest execution paths
through the whole program.

The data flow analysis of the first block also detects
infeasible paths, i.e., program points that cannot occur in any
real execution. This reduces the complexity of the following

micro-architectural analysis. Basic block timings are
determined using an abstract processor model (timing model) to
analyze how instructions pass through the pipeline taking
cache-hit/ cache-miss information into account. This model
defines a cycle-level abstract semantics for each instruction's
execution yielding in a certain set of final system states. After
the analysis of one instruction has been finished, these states
are used as start states in the analysis of the successor
instruction(s). Here, the timing model introduces non-
determinism that leads to multiple possible execution paths in
the analyzed program. The pipeline analysis has to examine all
of these paths.

In the following sections we will focus on the commercially
available tool aiT [1] which implements the architecture
described above. It is centered around a precise model of the
microarchitecture of the target processor and is available for
various 16-bit and 32-bit single-core and multi-core
microcontrollers. aiT determines the WCET of a program task
in several phases corresponding to the reference architecture
described above, which makes it possible to use different
methods tailored to each subtask [34]. In the following we will
give an overview of each analysis stage.

• In the decoding phase the instruction decoder reads and
disassembles the input executable(s) into its individual
instructions. Architecture specific patterns decide whether
an instruction is a call, branch, return or just an ordinary
instruction. This knowledge is used to reconstruct the basic
blocks of the control flow graph (CFG) [33]. Then, the
control flow between the basic blocks is reconstructed. In
most cases, this is done completely automatically.
However, if a target of a call or branch cannot be statically
resolved, then the user can write some annotations to guide
the control flow reconstruction.

• The combined loop and value analysis determines safe
approximations of the values of processor registers and
memory cells for every program point and execution
context. These approximations are used to determine
bounds on the iteration number of loops and information
about the addresses of memory accesses. Contents of
registers or memory cells, loop bounds, and address ranges
for memory accesses may also be provided by annotations
if they cannot be determined automatically. Value analysis
information is also used to identify conditions that are
always true or always false. Such knowledge is used to
infer that certain program parts are never executed and
therefore do not contribute to the worst-case execution
time or the stack usage.

• In the micro-architectural analysis phase cache and pipeline
analysis has to be combined because the pipeline analysis
models the flow of instructions through the processor
pipeline and therefore computes the precise instant of time
when the cache is queried and its state is updated. The
combined cache and pipeline analysis represents an
abstract interpretation of the program's execution on the
underlying system architecture. The execution of a
program is simulated by feeding instruction sequences
from a control-flow graph to the timing model which
computes the system state changes at cycle granularity and

www.embedded-world.eu

keeps track of the elapsing clock cycles. The correctness
proofs according to the theory of abstract interpretation
have been conducted by Thesing [35]. The cache analysis
presented by [10] is incorporated into the pipeline analysis.
At each point where the actual hardware would query and
update the contents of the cache(s), the abstract cache
analysis is called, simulating a safe approximation of the
cache effects. The result of the cache/pipeline analysis
either is a worst-case execution time for every basic block,
or a prediction graph that represents the evolution of the
abstract system states at processor core clock granularity
[7].

• The path analysis phase uses the results of the combined
cache/pipeline analysis to compute the worst-case path of
the analyzed code with respect to the execution timing.
The execution time of the computed worst-case path is the
worst-case execution time for the program. Within the aiT
framework, different methods for computing this worst-
case path are available.

aiT has been successfully employed in the avionics [12, 11, 31]
and automotive [23] industries to determine precise bounds on
execution times of safety-critical software. It is available for a
variety of microprocessors ranging from simple processors like
ARM7 to complex superscalar processors with timing
anomalies and domino effects like Freescale MPC755, or
MPC7448, and multicore processors like Infineon AURIX
TC27x.

IV. HYBRID WCET ANALYSIS

Techniques to compute worst-case execution time
information from measurements are either based on end-to-end
measurements of tasks, or they construct a worst-case path
from timing information obtained for a set of smaller code
snippets in which the executable code of the task has been
partitioned. With end-to-end timing measurements, timing
information is only determined for one concrete input. As
described above, due to caches and pipelines the timing
behavior of an instruction depends on the program path
executed before. Therefore, usually no full test coverage can be
achieved and there is no safe test end criterion. Approaches that
instrument the code to obtain timing information about the
code snippets of a task modify the code which can significantly
change the cache and pipeline behavior (probe effect): the
times measured for the instrumented software do not
necessarily correspond to the timing behavior of the original
software.

The solution which is implemented in the hybrid WCET
analysis tool TimeWeaver [2] combines static context-sensitive
path analysis with non-intrusive real-time instruction-level
tracing to provide worst-case execution time estimates. By its
nature, an analysis using measurements to derive timing
information is aware of timing interference due to concurrent
execution and multicore resource conflicts, because the effects
of asynchronous events (e.g. activity of other running cores or
DRAM refreshes) are directly visible in the measurements. The
probe effect is completely avoided since no code
instrumentation is needed. The computed estimates are safe
upper bounds with respect to the given input traces, i.e.,
TimeWeaver derives an overall upper timing bound from the

execution time observed in the given traces. Thus, the coverage
of the input traces on the analyzed code is an important metric
that influences the quality of the computed WCET estimates.

The trace information needed for running TimeWeaver is
provided out-of-the-box by embedded trace units of modern
processors, like NEXUS IEEE-ISTO 5001™ [16] or ARM

CoreSight™ [3]. They allow the fine-grained observation of a

program execution on single-core and multicore systems.
Examples for processors supporting the NEXUS trace interface
are the NXP QorIQ P- and T-series processors (using either an
e500mc or an e5500/e6500 core).

A. NEXUS Traces

On the PowerPC architecture TimeWeaver relies on
NEXUS program flow trace messages. Such traces consist of
trace segments separated by trace events. TimeWeaver maps
the events to points in the control-flow graph (trace points) and
the segments to program paths between these points. This is
done for those parts of the trace that reach from the call of the
routine used as analysis entry till the end of that routine or any
other feasible end of execution. Such parts are called trace
snippets. A single trace may contain several trace snippets.
TimeWeaver can operate on one or more traces given as trace
files, each containing one or more trace snippets.

A NEXUS trace event encodes its type, a time stamp
containing the elapsed CPU cycles since the last trace event
and the contents of the branch history buffer, which can be
used to reconstruct execution path decisions and allows to map
trace segments to the control-flow graph of the corresponding
executable.

Microprocessor debugging solutions like the Lauterbach
PowerDebug Pro [20] allow to record NEXUS trace events as
they are emitted during program execution and to export them
in various formats. TimeWeaver can process those exports for
its timing analysis as described below.

Here is a sample NEXUS trace excerpt (with some
information removed) in ASCII format:

+056 TCODE=1D PT-IBHSM F-ADDR=F1F4 HIST=2 TS=8847

+064 TCODE=21 PT-PTCM EVCODE=A TS=88F1

+072 TCODE=1C PT-IBHM U-ADDR=03DC HIST=1 TS=8D62

+080 TCODE=21 PT-PTCM EVCODE=A TS=8E2F

+088 TCODE=21 PT-PTCM EVCODE=A TS=8FBA

+096 TCODE=21 PT-PTCM EVCODE=A TS=9105

+104 TCODE=1C PT-IBHM U-ADDR=02CC HIST=1 TS=9275

+112 TCODE=1C PT-IBHM U-ADDR=01F0 HIST=1 TS=93BF

+120 TCODE=21 PT-PTCM EVCODE=A TS=997B

+128 TCODE=1C PT-IBHM U-ADDR=0044 HIST=1 TS=9B02

+136 TCODE=21 PT-PTCM EVCODE=A TS=9F21

This output has been generated using the following
command in the Lauterbach Trace32 tool:
Trace.export.ascii <file> nexus /showRecord

Each line corresponds to a trace event. The number at the
beginning of the line is the trace record number. The second
and third column represent the particular trace event type
followed by type-specific information like branch history and
program address information associated with the event. The TS

number at the end is a time stamp.

Debugging solutions differ in the format in which they
export trace data. Some debuggers allow the user to configure
the output. TimeWeaver can currently import traces which
have been exported by Lauterbach, PLS or iSYSTEM
debuggers. Whenever the format is configurable, we have
identified a minimal set of information needed to perform the
TimeWeaver analysis. Additionally, TimeWeaver can be easily
extended to support other trace formats.

B. TimeWeaver Toolchain

The main inputs for TimeWeaver are the fully linked
executable(s), timed traces and the location of the analyzed
code in the memory (entry point, which usually is the name of
a task or function). Optionally, users can specify further
semantical information to the analysis, like targets of computed
calls, loop bounds, values of registers and memory cells. This
information is used to fine-tune the analysis. The analysis
proceeds in several stages: decoding, loop/value analysis, trace
analysis, and path analysis. Most steps in this tool chain are
shared with aiT, leveraging its powerful static analysis
framework.

The decoding phase of TimeWeaver is mostly identical to
the decoding phase of aiT. One important difference is that
when encountering call targets which cannot be statically
resolved, TimeWeaver can be instructed to extract the targets
of unresolved branches or calls from the input traces. To this
end there is a feedback loop between the CFG reconstruction
and the trace analysis step (cf. Fig. 1). As an alternative, the
same user annotations can be used as in the aiT tool chain.

In the next phase, several microarchitectural analyses are
performed on the reconstructed CFG starting with the
combined loop and value analysis, again equal to the aiT tool
chain. It determines possible values of registers and memory
cells, addresses of memory accesses, as well as loop and
recursion bounds. Based on this, statically infeasible paths are
computed, i.e., parts of the program that cannot be reached by
any execution under the given configuration. This is important
because each detected infeasible path increases the trace
coverage. Such paths are pruned from further analysis. If the
value analysis cannot compute a loop bound or if the computed
bound is not precise enough, users can specify custom bounds
by means of annotations which are used by the analysis. The
loop transformation allows loops in the CFG to be handled as
self-recursive routines to improves analysis precision [32].

After value analysis, the analyzer has annotated each
instruction in the control-flow graph with context-sensitive
analysis results. This context-sensitivity is important because
the precision of an analysis can be improved significantly if the
execution environment is considered [32]. For example, if a
routine is called with different register values from two
different program points, the execution time in both situations
might be different. Depending on the context settings, this is
taken into account leading to higher precision in the analysis
result.

Fig. 1. TimeWeaver tool chain structure

In the trace analysis step the given traces are analyzed such
that each trace event is mapped to a program point in the
control-flow graph. This mapping defines the trace points and
segments mentioned above and is not only necessary for the
whole analysis but also ensures that the input trace matches the
analyzed binary. In case a preemptive system has been traced,
interrupts are detected and reported. The extracted timing
information, i.e., the clock cycles which have been elapsed
between two consecutive trace points are annotated to the CFG
in a context-sensitive manner.

After the trace conversion, a CFG which combines the
results of value analysis and traced execution timings (both
context-sensitive) is available. This graph is the input for the
next step, the path analysis phase. Here, the trace segment
times alongside the control-flow graph are used to generate an
integer linear program (ILP) formulation to compute the worst-
case execution path with respect to the traced timings. At this
point, the recorded times for each pair of trace segment and

www.embedded-world.eu

analysis context, get maximized. The ILP formulation is
structurally the same as in the path analysis of aiT [33] with the
exception that the involved execution times are not computed
by a micro-architectural pipeline analysis but are extracted
from the input traces. The generated ILP is fed to a solver
whose solution is the worst-case execution path alongside its
costs, i.e., the WCET estimate of the analyzed task. This
solution is annotated to the CFG for the final step, namely
reporting and visualization.

As mentioned above, the input traces might contain
asynchronous events like DRAM refreshes which can lead to
exceptionally high trace segment times. TimeWeaver allows to
address these with a filter for trace segment times based on
their cumulative frequency (CF), i.e. their occurrence
percentage. The threshold refers to a percentage of occurrences
ordered by execution times (as in the survival graph, see
below). A threshold of 0% is passed by all occurrences. A
threshold of 5% is passed by all but the 4 most expensive ones
(in terms of execution time) if there are 100 occurrences, by all
but the 9 most expensive ones if there are 200 occurrences, etc.
Trace segment times that do not pass the specified threshold
are ignored in the ILP generation. The filter function is applied
for each trace segment separately. TimeWeaver also allows to
simulate the effect of the CF filter in its statistics view to
experiment with different filter values.

C. TimeWeaver Result Reporting and Visualization

Besides the global WCET estimate and the execution path
triggering it, TimeWeaver offers a variety of reporting
facilities:

• WCET estimate per routine (including cumulative
information of called sub routines),

• Context-specific WCET estimate per routine (including
cumulative information of called sub routines),

• Determined loop bounds (distinguishes between traced,
analyzed, and effective bounds) including loop scaling
conflicts,

• Variance of trace segment times (context-sensitive),

• Trace coverage with respect to the number of basic
blocks and instructions in the analyzed code, and

• Memory access information along the computed worst-
case path.

In addition to the above described statistics, TimeWeaver
provides the following visualizations:

• Analysis result graph to interactively explore the results,

• Per trace segment distribution graph for the recorded
segment times (cf. Fig. 2), and a

• Per trace segment survival graph to show the
cumulative frequency of the recorded segment times
(cf. Fig. 3).

Fig. 2. Sample distribution graph of a trace segment

Fig. 3 Sample survival graph of a trace segment

D. WCET Estimate Extrapolation

As mentioned above, TimeWeaver computes the global
WCET estimate based on the observed execution times of trace
segments. The times are maximized per trace segment and the
maximized times are composed to identify the worst-case path
with respect to those figures.

Where in general, one would need to measure all possible
execution paths (which is impractical on real-world
applications) of the analyzed program for coverage reasons,
TimeWeaver allows to compute an upper bound on the global
execution time of the analyzed program based on the trace
segment times extracted from the input traces.

This way, it is only necessary to trace all possible execution
paths between two consecutive trace points. By inserting
custom trace points, the user can further decrease the required
number of measurements. Fig. 4 illustrates this by showing
three consecutive trace points (TP1, TP2, and TP3) and the
possible execution paths between each of them. TimeWeaver
composes the WCET estimate for the time between TP1 and
TP3 by the sum over the maximized trace segment time
between TP1→TP2 and the maximized trace segment time
between TP2→TP3. Thus, the measurements need to cover the
four execution paths between TP1→TP2 as well as between
three execution paths between TP2→TP3. Without that time
composition, all 12 execution paths between TP1→TP3 need
to be measured.

E. Loop Scaling

For loops, there might be a gap between the maximum of
the observed iteration counts in the input traces (traced bound)
and the statically possible maximum iteration count (analyzed
bound) which is computed by the value analysis. The bound

actually used for the ILP generation is the so-called effective
bound which is the analyzed bound if it is finite and applicable
(cf. scaling conflicts below) and otherwise the traced bound.
Per user request, the intersection of analyzed and traced bound
is used.

If the effective bound is higher than the traced bound, the
maximum observed execution time (context-sensitively) for
one loop iteration is scaled up to the effective bound. This
overcomes the necessity to trace each loop in the analyzed task
with its worst-case iteration count, which might be hard to
achieve because loop conditions often are data-dependent and
thus can be complex to trigger.

However, loop scaling as described above is not always
directly applicable. It requires each trace to pass a trace point
inside the loop body. If there is at least one traced execution
path through the loop body without a trace point, scaling
cannot be done and only the traced bounds are used for this
loop. Such a situation is called an event loop scaling conflict.
The solution is to either trace the worst-case loop iteration
count or to ensure that each traced path through the loop body
passes a trace point (by inserting custom trace points).

There is another situation which triggers a loop scaling
conflict: if due to the context settings of the analysis a loop is
virtually unrolled more times than the corresponding loop body
has been executed in the trace, scaling cannot be applied, as
well. The reason is that the scaling is applied in the last loop
context, i.e., in that context which represents the last loop
iteration(s). In that case, there is no traced loop body time in
the trace mapped to this context which prevents scaling. Such a
conflict is called a unroll loop scaling conflict. To solve this
conflict, one can either trace the worst-case iteration count of
the corresponding loop or the (virtual) loop unroll during
analysis of this particular loop can be decreased to the traced
bound.

Fig. 4 Execution paths between trace points

V. EXPERIMENTAL RESULTS ON TIMEWEAVER

To evaluate TimeWeaver for PowerPC, we recorded
program executions on an NXP T1040 [25] evaluation board
using a Lauterbach PowerDebug Pro JTAG debugger.

A. Loop scaling

Execution times for loops can be scaled up from the
maximum observed execution time of the loop body. This can
be seen in the analysis of the following program:

 1 volatile int sensor;

 2

 3 int helper (int x)

 4 {

 5 int result = x;

 6 result += sensor;

 7 return result + 3;

 8 }

 9

 10

 11 int main (void)

 12 {

 13 int result = 0;

 14

 15 result += helper(256);

 16

 17 int i;

 18 int loop_bound = (sensor-0xDEADBEEF)+5;

 19

 20 /* Loop with statically unknown bound */

 21 for (i=0 ; i<loop_bound ; ++i) {

 22 result += 1024;

 23 result += helper(128);

 24 }

 25

 26 result += helper(256);

 27

 28 return result + 1;

 29 }

Before starting measurements, we stored the value
0xDEADBEEF in the memory cell representing the variable

sensor, so that the traced loop bound is 5 due to the

assignment in line 18. However, the code has been written in a
way that the static analysis cannot compute a finite loop bound
for this loop because the value for sensor is not known

statically. Without any user input, TimeWeaver uses the traced
loop bounds in its analysis and computes a WCET estimate of
8.5 µs. Analyzing again with a loop bound of 10 yields an
estimate of 16.7 µs. This is expected as TimeWeaver now
scales up the time for the loop body to 10 rounds. The WCET
estimate does not precisely doubles because of the contribution
of the surrounding code to the execution time.

B. Precision

To show the precision of the computed WCET estimates,
we compared TimeWeaver results with the maximum end-to-
end times seen in those input traces we have fed to
TimeWeaver. For comparison reasons, loop bounds in the
analysis have been chosen equal to the traced loop bounds. The
following table shows the results.

www.embedded-world.eu

Application Trace [cycles] Estimate [cycles] Diff [%]

crc 809068 829039 2.47

edn 4788025 4791420 0.07

eratosthenes sieve 368345 369803 0.40

dhrystone 168093 177314 5.49

md5 127857 131718 3.02

nestedDepLoops 2747357 2747359 0.00

sha 23426161 23815350 1.66

Avionics Task 420677 498028 18.38

Automotive Task 1 65058 71964 10.62

Automotive Task 2 27215 28967 6.44

Automotive Task 3 17386 18595 6.95

Automotive Task 4 101749 109302 7.42

Tab. 1. TimeWeaver Result Comparison

For each application, the maximum observed end-to-end
time has been extracted from the traces and compared with the
WCET estimate computed by TimeWeaver. The difference
represents the overestimation of TimeWeaver resulting from
the composition of trace segment times to a global estimate. In
average, the TimeWeaver results from the table above are
5.24% above the maximum observed end-to-times from the
traces.

VIII. CONCLUSION

In this article we have given a definition of timing

predictability and discussed hardware features which increase

the difficulty of obtaining safe and precise worst-case

execution time bounds, both on single-core and multicore

processors. We have described the methodology of static

worst-case execution time analysis which can provide

guaranteed WCET bounds on complex processors, if the

timing behavior of the processor is well specified, and

asynchronous interferences can be controlled or bounded.

Hybrid worst-case execution time analysis allows to obtain

worst-case execution time bounds even for systems where

these conditions are not met. We have given an overview of

the hybrid WCET analyzer TimeWeaver which combines

static value and path analysis with timing measurements based

on non-intrusive instruction-level real-time traces. The trace

information covers interference effects, e.g., by accesses to

shared resources from different cores, without being distorted

by probe effects since no instrumentation code is needed. The

analysis results include the computed WCET bound with the

time-critical path, and information about the trace coverage

obtained. They provide valuable feedback for optimizing trace

coverage, for assessing system safety, and for optimizing

worst-case performance. Experimental results show that with

good trace coverage safe and precise WCET bounds can be

efficiently computed.

ACKNOWLEDGMENT

This work was funded within the project ARAMiS II by the

German Federal Ministry for Education and Research (BMBF)

with the funding ID 01IS16025B, and within the BMBF

project EMPHASE with the funding ID 16EMO0183. The

responsibility for the content remains with the authors.

REFERENCES

[1] AbsInt GmbH. aiT Worst-Case Execution Time Analyzer Website.
http://www.AbsInt.com/ait.

[2] AbsInt GmbH. TimeWeaver Website. http://www.AbsInt.com/-
timeweaver.

[3] ARM Ltd. CoresightTM Program Flow TraceTM PFTv1.0 and PFTv1.1
architecture specification, 2011. ARM IHI 0035B.

[4] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan
Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine
Rochange, Maurice Sebastian, Reinhard von Hanxleden, Reinhard
Wilhelm, and Wang Yi. Building timing predictable embedded systems.
ACM Transactions on Embedded Computing Systems, 13(4):82:1–
82:37, 2014.

[5] Certification Authorities Software Team (CAST). Position Paper
CAST-32A Multi-core Processors, November 2016.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In 4 th POPL, pages 238–252, Los Angeles, CA, 1977. ACM
Press.

[7] Christoph Cullmann. Cache persistence analysis for embedded real-
time systems. PhD thesis, Universitaet des Saarlandes, Postfach 151141,
66041 Saarbruecken, 2013.

[8] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel
Grund, Claire Maiza, Jan Reineke, Benoît Triquet, and Reinhard
Wilhelm. Predictability considerations in the design of multi-core
embedded systems. In Proceedings of Embedded Real Time Software
and Systems, pages 36–42, May 2010.

[9] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University, 2003.

[10] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems.
PhD thesis, Saarland University, 1997.

[11] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and
Reinhard Wilhelm. Reliable and precise WCET determination for a
real-life processor. In Proceedings of EMSOFT 2001, First Workshop
on Embedded Software, volume 2211 of Lecture Notes in Computer
Science, pages 469–485. Springer-Verlag, 2001.

[12] Christian Ferdinand and Reinhard Wilhelm. Fast and Efficient Cache
Behavior Prediction for Real-Time Systems. Real-Time Systems, 17(2-
3):131–181, 1999.

[13] Freescale Inc. QorIQTM P4080 Communications Processor Product
Brief, September 2008. Rev. 1.

[14] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards
compositionality in execution time analysis: Definition and challenges.
SIGBED Rev., 12(1):28–36, March 2015.

[15] IEC 61508. Functional safety of electrical/electronic/programmable
electronic safety-related systems, 2010.

[16] IEEE-ISTO. IEEE-ISTO 5001TM-2012, The Nexus 5001TM Forum
Standard for a Global Embedded Processor Debug Interface, 2012.

[17] Infineon Technologies AG. AURIXTM TC27x D-Step User’s Manual,
2014.

[18] D. Kästner, M. Schlickling, M. Pister, C. Cullmann, G. Gebhard,
R. Heckmann, and C. Ferdinand. Meeting Real-Time Requirements
with Multi-Core Processors. Safecomp 2012 Workshop: Next
Generation of System Assurance Approaches for Safety-Critical
Systems (SASSUR), September 2012.

[19] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, January 2018.

[20] Lauterbach GmbH. Lauterbach Website. http://www.lauterbach.com.

[21] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.

[22] Thomas Lundqvist and Per Stenström. Timing anomalies in
dynamically scheduled microprocessors. In Real-Time Systems
Symposium (RTSS), December 1999.

[23] NASA Engineering and Safety Center. Technical Support to the
National Highway Traffic Safety Administration (NHTSA) on the
Reported Toyota Motor Corporation (TMC) Unintended Acceleration
(UA) Investigation, 2011.

[24] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core Interference-Sensitive WCET Analysis
Leveraging Runtime Resource Capacity Enforcement. In ECRTS’14:
Proceedings of the 26th Euromicro Conference on Real-Time Systems,
July 2014.

[25] NXP Semiconductors. QorIQTM T1040 Reference Manual, 2015.

[26] Radio Technical Commission for Aeronautics. Formal Methods
Supplement to DO-178C and DO-278A, 2011.

[27] Radio Technical Commission for Aeronautics. RTCA DO-178C.
Software Considerations in Airborne Systems and Equipment
Certification, 2011.

[28] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
Timing predictability of cache replacement policies. Real-Time Systems,
37(2):99–122, 2007.

[29] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia
Polian, Jochen Eisinger, and Bernd Becker. A Definition and
Classification of Timing Anomalies. In Frank Mueller, editor,
International Workshop on Worst-Case Execution Time Analysis
(WCET), July 2006.

[30] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing
predictability on multi-processor systems with shared resources. In
Workshop on Reconciling Performance with Predictability (RePP),
2010, October 2009.

[31] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu,
Guillaume Borios, and Reinhold Heckmann. Computing the worst case
execution time of an avionics program by abstract interpretation. In
Proceedings of the 5th Intl Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 21–24, 2005.

[32] Stefan Stattelmann and Florian Martin. On the Use of Context
Information for Precise Measurement-Based Execution Time
Estimation. In B. Lisper, editor, 10th International Workshop on Worst-
Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess
Series in Informatics (OASIcs), pages 64–76. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010.

[33] Henrik Theiling. Control Flow Graphs for Real-Time System Analysis.
Reconstruction from Binary Executables and Usage in ILP-Based Path
Analysis. PhD thesis, Saarland University, 2003.

[34] Henrik Theiling and Christian Ferdinand. Combining abstract
interpretation and ILP for microarchitecture modelling and program
path analysis. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 144–153, Madrid, Spain, December 1998.

[35] Stephan Thesing. Safe and Precise Worst-Case Execution Time
Prediction by Abstract Interpretation of Pipeline Models. PhD thesis,
Saarland University, 2004.

[36] Simon Wegener. Towards Multicore WCET Analysis. In Jan Reineke,
editor, 17th International Workshop on Worst-Case Execution Time
Analysis (WCET 2017), volume 57 of OpenAccess Series in Informatics
(OASIcs), pages 1–12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[37] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Markus Pister, Marc
Schlickling, and Christian Ferdinand. Memory hierarchies, pipelines,
and buses for future time-critical embedded architectures. IEEE TCAD,
28(7):966–978, July 2009.

