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Abstract—Many embedded control applications have real-

time requirements. If the application is safety-relevant, worst-

case execution time bounds have to be determined in order to 

demonstrate deadline adherence. If the microprocessor is timing-

predictable, worst-case execution time guarantees can be 

computed by static WCET analysis. For high-performance multi-

core architectures with degraded timing predictability, WCET 

bounds can be computed by hybrid WCET analysis which 

combines static analysis with timing measurements. This article 

summarizes the relevant criteria for assessing timing pre-

dictability, gives a brief overview of static WCET analysis and 

focuses on a novel hybrid WCET analysis based on non-intrusive 

real-time instruction-level tracing. 
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I.  INTRODUCTION 

In real-time systems the overall correctness depends on the 
correct timing behavior: each real-time tasks has to finish 
before its deadline. All current safety standards require reliable 
bounds of the worst-case execution time (WCET) of real-time 
tasks to be determined.  

With end-to-end timing measurements timing information 
is only determined for one concrete input. Due to caches and 
pipelines the timing behavior of an instruction depends on the 
program path executed before. Therefore, usually no full test 
coverage can be achieved and there is no safe test end criterion. 
Techniques based on code instrumentation modify the code 
which can significantly change the cache and pipeline behavior 
(probe effect): the times measured for the instrumented 
software do not necessarily correspond to the timing behavior 
of the original software. 

One safe method for timing analysis is static analysis by 
Abstract Interpretation which provides guaranteed upper 
bounds for WCET of tasks. Static WCET analyzers are 
available for complex processors with caches and complex 
pipelines, and, in general, support single-core processors and 
multi-core processors. A prerequisite is that good models of the 
processor/System on-Chip (SoC) architecture can be 
determined. However, there are modern high performance 
SoCs which contain unpredictable and/or undocumented 
components that influence the timing behavior. Analytical 
results for such processors are unrealistically pessimistic. 

A hybrid WCET analysis combines static value and path 
analysis with measurements to capture the timing behavior of 
tasks. Compared to end-to-end measurements the advantage of 
hybrid approaches is that measurements of short code snippets 
can be taken which cover the complete program under analysis. 
Based on these measurements a worst-case path can be 
computed. The hybrid WCET analyzer TimeWeaver avoids the 
probe effect by leveraging the embedded trace unit (ETU) of 
modern processors, like Nexus 5001™ [16], which allows a 

fine-grained observation of a core’s program flow. 
TimeWeaver reads the executable binary, reconstructs the 
control-flow graph and computes ranges for the values of 
registers and memory cells by static analysis. This information 
is used to derive loop bounds and prune infeasible paths. Then 
the trace files are processed and the path of longest execution 
time is computed. The computed time estimate provide 
valuable feedback for assessing system safety and for 
optimizing worst-case performance. TimeWeaver also provides 
feedback for optimizing the trace coverage: paths for which 
infeasibility has been proven need no measurements; loops for 
which the analyzed worst-case iteration count has not been 
measured are reported.  

In this article we give an overview of timing predictability 
in general and provide criteria for selecting suitable WCET 
analysis methods. We will outline the methodology of hybrid 
WCET analysis and report on practical experience with the tool 
TimeWeaver. 

II. TIMING PREDICTABILITY 

In general, a system is predictable if it is possible to predict 
its future behavior from the information about its current state. 
We consider predictability under the assumption that the 
hardware works without unexpected errors. Hardware faults 
like soft errors or transient faults have to be addressed by 
specific error handling mechanisms to ensure overall system 
safety.  

In [4] the program input and the hardware state in which 
execution begins are identified as the primary sources of 
uncertainty in execution time. Hardware-related timing  
predictability can be expressed as the maximal variance in 
execution time due to different hardware states for an arbitrary 
but fixed input. Analogously, software-related timing 
predictability corresponds to the maximal variance in 
execution time due to different inputs for an arbitrary but fixed 



hardware state. A basic assumption is uninterrupted program 
execution without interferences. In a concurrent system, 
interferences due to concurrent execution additionally have to 
be taken into account.  

To ensure the correct timing behavior it is necessary to 
demonstrate the deadline adherence of each task. To this end, 
the worst-case execution time of each task has to be 
determined, i.e. the concept of software-related predictability 
as defined above can be reduced to the predictability of the 
worst-case execution path.  

This leads to the following two main criteria for execution 
time predictability: 

• It must be possible to determine an upper bound of the 
maximal execution time which is guaranteed to hold. 

• To enable precise bounds on the maximal execution time to 
be determined the behavioral variance, i.e. the maximal 
variance in execution time due to different hardware states, 
has to be as low as possible. In general, the larger the 
behavioral variance is  

o the more the execution time depends on the execution 
history, 

o the less meaningful is one particular execution time 
measurement in a specific execution context, and 

o the larger can be the gap between the largest measured 
execution time and the true worst-case execution time. 

Even in single-core processors timing predictability is 
compromised by performance-enhancing hardware 
mechanisms like caches, pipelines, out-of-order execution, 
branch prediction and other mechanisms for speculative 
execution, which can cause significant variations in timing 
depending on the hardware state. Interestingly hardware 
speculation has recently been discovered to constitute a critical 
security vulnerability [21, 19].  

For multi-core processors all challenges to timing 
predictability are relevant that apply to single-core processors. 
In addition, there are new challenges imposed by the multi-core 
design. In the following we will first discuss timing 
predictability on single-core processors and then address 
specific challenges for multi-core processors. 

A. Single-Core Processors 

For simple non-pipelined architectures adding up the 
execution times of individual instructions is enough to obtain a 
bound on the execution time of a basic block. However, 
modern embedded processors try to maximize the instruction-
level parallelism by sophisticated performance-enhancing 
features, like caches, pipelines, or speculative execution. 
Pipelines increase performance by overlapping the executions 
of consecutive instructions. For timing measurements this 
means that there may be big variations between the execution 
times measured with different starting states of the hardware. 
Furthermore there may be a significant gap between the largest 
measured execution time and the true worst-case execution 
time. For a timing analyzer it means that it is not feasible to 
consider individual instructions in isolation. Instead, they have 
to be analyzed collectively—together with their mutual 

interactions—to obtain tight timing bounds. In the following 
we will give an overview of timing-relevant hardware features 
and discuss their effect on timing measurements and on static 
analysis methods. 

In general, the challenges for timing analysis of single-core 
architectures originate from the complexity of the particular 
execution pipeline and the connected hardware devices. 
Commonly used performance-enhancing features are caches, 
pipelines, out-of-order execution, speculative execution 
mechanisms like static/dynamic branch prediction and branch 
history tables, or branch target instruction caches. Many of 
these hardware features can cause timing anomalies [29] which 
render WCET analysis more difficult. Intuitively, a timing 
anomaly is a situation where the local worst-case does not 
contribute to the global worst-case. For instance, a cache miss 
—the local worst-case—may result in a globally shorter 
execution time than a cache hit because of hardware scheduling 
effects. In consequence, it is not safe to assume that the 
memory access causes a cache miss; instead both machine 
states have to be taken into account. An especially difficult 
timing anomaly are domino effects [22]: A system exhibits a 
domino effect if there are two hardware states s, t such that the 
difference in execution time (of the same program starting in s, 
t respectively) may be arbitrarily high. E.g., given a program 
loop, the executions never converge to the same hardware state 
and the difference in execution time increases in each iteration. 
In consequence, loops have to be analyzed very precisely and 
the number of machine states to track can grow high. For 
timing measurements this means that the difference between 
measured and true worst-case execution time caused by an 
incomplete hardware state coverage can grow arbitrarily high. 

The article [37] categorizes the timing compositionality of 
computing architectures according to the presence of timing 
anomalies. Fully compositional architectures, such as the 
ARM7, contain no timing anomalies; individual components, 
e.g., basic blocks, can be considered separately and their worst-
case information can be combined. Compositional architectures 
only contain bounded timing effects, i.e., additional delays 
(e.g., due to an access to a shared resource or due to a 
preemption or interrupt) can be bounded by a constant and 
added to the local worst-case figures (e.g. TriCore 1797). Non-
compositional architectures contain domino effects, i.e., 
unbounded anomalies (e.g. PowerPC 755). Depending on the 
state of the pipeline and the predictors, the occupancy of 
functional units, and the contents of the caches—i.e., the 
execution history—an instruction needs only a few or several 
hundred cycles to complete its execution [8]. A rigorous 
definition of compositionality is given in [14].  

As the runtime of embedded control software often is 
dominated by load/store operations, memory subsystems 
nowadays introduce queues before the caches to buffer them 
and overcome early stall conditions like cache misses. Often 
this is complemented by fast data forwarding for consecutive 
accesses into cache lines that have already been requested by 
previous pending instructions, where the requested data might 
already be present in the core. This helps to reduce the number 
of transactions over the slow system bus. In the abstract model 
of the timing analysis, the representation of these hardware 
features has to be close to the concrete hardware to achieve 
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satisfactory analysis precision. Due to their size, especially the 
dynamic branch prediction and the branch history tables 
consume a significant number of bits in the abstract state 
representation which increases the memory consumption of the 
analysis. Unknown or not precisely known effective addresses 
of memory requests further increase the timing analysis search 
space due to the number of possible scenarios (cache hit/miss, 
fast data forward or not, …). Concerning processor caches, 
both precision and efficiency depend on the predictability of 
the employed replacement policy [28, 8]. The Least-Recently-
Used (LRU) replacement policy has the best predictability 
properties. Employing other policies, like Pseudo-LRU 
(PLRU), or First-In-First-Out (FIFO), or Random, yield less 
precise WCET bounds because fewer memory accesses can be 
precisely classified. Furthermore, the efficiency degrades 
because the analysis has to explore more possibilities. Another 
deciding factor is the write policy. Typically, there are two 
main options: write-through where a store is directly written to 
the next level in the memory hierarchy, and write-back where 
the data is written into the next hierarchy level if the concrete 
memory cell is evicted from the cache. The write-back policy 
induces timing uncertainty because the precise point in time 
when the write-back occurs is hard to predict; for example, it 
might happen after a task switch and slow down a different 
(and possibly higher-priority) task than the one that issued the 
store operation in the first place. Another timing analysis 
challenge is to model processor external devices which are 
typically connected with the caches over the system bus. Such 
devices are memory controllers for static (SRAM, Flash) or 
dynamic memory (DRAM, DDR or QDR) or controllers for 
system communication (CAN, FlexRay, AFDX). The 
corresponding bus protocol and memory chip timing have to be 
modeled precisely. 

Individually, each of the above features can be modeled 
without complexity problems. Only their combination can 
actually result in a large number of possible system states 
during the abstract simulation of a basic block. Smart system 
configurations as described in [18] can decrease both the 
execution time variability and the analysis complexity. In 
consequence, the complexity of timing analysis decreases such 
that highly complex processors like the Freescale PowerPC 
7448 can be handled. At the same time the accuracy of timing 
measurements will be improved. 

Some events in modern architectures are either 
asynchronous to program execution (e.g., interrupts, DMA) or 
not predictable in the model (e.g., ECC errors in RAM or some 
hardware exceptions). Their effect on the execution time has to 
be incorporated externally, i.e., by adding penalties based on 
the worst-case occurrence of the events to the computed 
WCET, or by statistical means. 

B. Multi-Core Processors 

Whereas timing analysis of single-core architectures 
already is quite challenging, the timing behavior of multi-core 
architectures is even more complex. A multi-core processor is a 
single computing component with two or more independent 
cores; it is called homogeneous if it includes only identical 
cores, otherwise it is called heterogeneous. Thus, all 
characteristic challenges from single-cores are still present in 

the multi-core design, but the multiple cores can independently 
run multiple instructions at the same time. Some multi-core 
processors can be run in lockstep mode where all cores execute 
the same instruction stream in parallel. This typically 
eliminates interferences between the cores, so from a timing 
perspective the processor behaves like a single-core. 

When the processor is not run in lockstep mode, the inter-
core parallelism becomes relevant. To interconnect the several 
cores, buses, meshes, crossbars, and also dynamically routed 
communication structures are used. In that case, the 
interference delays due to conflicting, simultaneous accesses to 
shared resources (e.g. main memory) are the main cause of 
imprecision. On a single-core system, the latency of a memory 
access mostly depends on the accessed memory region (e.g. 
slow flash memory vs. fast static RAM) and whether the 
accessed memory cell has been cached or not. On a multicore 
system, the latency also depends on the memory accesses of 
the other cores, because multiple simultaneous accesses might 
lead to a resource conflict, where only one of the accesses can 
be served directly, and the other accesses have to wait. The 
shared physical address space requires additional effort in order 
to guarantee a coherent system state: Data resident in the 
private cache of one core may be invalid, since modified data 
may already exist in the private cache of another core, or data 
might have already been changed in the main memory. Thus, 
additional communication between different cores is required 
and the execution time needed for this has to be taken into 
account. Multi-core processors which can be configured in a 
timing-predictable way to avoid or bound inter-core 
interferences are amenable to static WCET analysis [18, 36]. 
Examples are the Infineon AURIX TC275 [17], or the 
Freescale MPC 5777. 

The Freescale P4080 [13] is one example of a multicore 
platform where the interference delays have a huge impact on 
the memory access latencies and cannot be satisfactorily 
predicted by purely static techniques. It consists of eight 
PowerPC e500mc cores which communicate with each other 
and the main memory over a shared interconnect, the CoreNet 
Coherency Fabric. The main problem for static analysis 
approaches is that the publically available documentation about 
the CoreNet is not enough to statically predict its behavior. 
Nowotsch et al. [24] measured maximal write latencies of 39 
cycles when only one core was active, and maximal write 
latencies of 1007 cycles when all eight cores were running. 
This is more than 25 times longer than the observed best case. 
A sound WCET analysis must take the interference delays into 
account that are caused by resource conflicts. Unless 
interference is avoided by means of the overall software 
architecture, ignoring these delays might result in 
underestimation of the real WCET whereas assuming full 
interferences at all times might result in huge overestimation.  

To improve predictability of avionics systems the 
Certification Authorities Software Team (CAST) [5] advocates 
to either deactivate or control existing interference channels. If 
deactivation is not possible the software architecture has to be 
able to prevent or bound the interferences. One hardware 
element where such mechanisms are required is the 
interconnect, i.e., the Network-on-Chip (NoC) or shared bus 
connecting main memory to the individual cores. Several 



approaches to address interference on shared memory accesses 
have been discussed in literature, most of them in the context 
of Integrated Modular Avionics (IMA). They typically rely on 
a time-triggered static scheduling scheme, e.g., corresponding 
to the avionics standard ARINC 653. As an example, with the 
approaches of [30] or [24] precise static WCET bounds can be 
computed, albeit at the cost of high computational complexity. 
For systems which do not implement such rigorous software 
architectures or where the information needed to develop a 
static timing model is not available, hybrid WCET approaches 
are the only solution. 

III. WCET GUARANTEES ON PREDICTABLE PROCESSORS 

The most successful formal method for WCET computation 
is Abstract Interpretation-based static program analysis. Static 
program analyzers compute information about the software 
under analysis without actually executing it. Semantics-based 
static analyzers use an explicit (or implicit) program semantics 
that is a formal (or informal) model of the program executions 
in all possible or a set of possible execution environments. 
Most interesting program properties—including the WCET—
are undecidable in the concrete semantics. The theory of 
abstract interpretation [6] provides a formal methodology for 
semantics-based static analysis of dynamic program properties 
where the concrete semantics is mapped to a simpler abstract 
model, the so-called abstract semantics. The static analysis is 
computed with respect to that abstract semantics, enabling a 
trade-off between efficiency and precision. A static analyzer is 
called sound if the computed results hold for any possible 
program execution. Applied to WCET analysis, soundness 
means that the WCET bounds will never be exceeded by any 
possible program execution. Abstract interpretation supports 
formal soundness proofs for the specified program analysis. 
Like model checking and theorem proving, it is recognized as a 
formal method by the DO-178C and other safety standards (cf. 
Formal Methods Supplement [26] to DO-178C [27]). It is 
based on a mathematically rigorous concept and provides the 
highest possible confidence in the correctness of the results (cf. 
IEC-61508, Ed. 2.0 [15], Table C.18).  

In addition to soundness, further essential requirements for 
static WCET analyzers are efficiency and precision. The 
analysis time has to be acceptable for industrial practice, and 
the overestimation must be small enough to be able to prove 
the timing requirements to be met.  

Over the last few years, a more or less standard architecture 
for timing analysis tools has emerged [9, 11]. It neither requires 
code instrumentation nor debug information and is composed 
of three major building blocks: 

• control-flow reconstruction and static analyses for control 
and data flow, 

• micro-architectural analysis, computing upper bounds on 
execution times of basic blocks, 

• path analysis, computing the longest execution paths 
through the whole program. 

The data flow analysis of the first block also detects 
infeasible paths, i.e., program points that cannot occur in any 
real execution. This reduces the complexity of the following 

micro-architectural analysis. Basic block timings are 
determined using an abstract processor model (timing model) to 
analyze how instructions pass through the pipeline taking 
cache-hit/ cache-miss information into account. This model 
defines a cycle-level abstract semantics for each instruction's 
execution yielding in a certain set of final system states. After 
the analysis of one instruction has been finished, these states 
are used as start states in the analysis of the successor 
instruction(s). Here, the timing model introduces non-
determinism that leads to multiple possible execution paths in 
the analyzed program. The pipeline analysis has to examine all 
of these paths.  

In the following sections we will focus on the commercially 
available tool aiT [1] which implements the architecture 
described above. It is centered around a precise model of the 
microarchitecture of the target processor and is available for 
various 16-bit and 32-bit single-core and multi-core 
microcontrollers. aiT determines the WCET of a program task 
in several phases corresponding to the reference architecture 
described above, which makes it possible to use different 
methods tailored to each subtask [34]. In the following we will 
give an overview of each analysis stage. 

• In the decoding phase the instruction decoder reads and 
disassembles the input executable(s) into its individual 
instructions. Architecture specific patterns decide whether 
an instruction is a call, branch, return or just an ordinary 
instruction. This knowledge is used to reconstruct the basic 
blocks of the control flow graph (CFG) [33]. Then, the 
control flow between the basic blocks is reconstructed. In 
most cases, this is done completely automatically. 
However, if a target of a call or branch cannot be statically 
resolved, then the user can write some annotations to guide 
the control flow reconstruction. 

• The combined loop and value analysis determines safe 
approximations of the values of processor registers and 
memory cells for every program point and execution 
context. These approximations are used to determine 
bounds on the iteration number of loops and information 
about the addresses of memory accesses. Contents of 
registers or memory cells, loop bounds, and address ranges 
for memory accesses may also be provided by annotations 
if they cannot be determined automatically. Value analysis 
information is also used to identify conditions that are 
always true or always false. Such knowledge is used to 
infer that certain program parts are never executed and 
therefore do not contribute to the worst-case execution 
time or the stack usage. 

• In the micro-architectural analysis phase cache and pipeline 
analysis has to be combined because the pipeline analysis 
models the flow of instructions through the processor 
pipeline and therefore computes the precise instant of time 
when the cache is queried and its state is updated. The 
combined cache and pipeline analysis represents an 
abstract interpretation of the program's execution on the 
underlying system architecture. The execution of a 
program is simulated by feeding instruction sequences 
from a control-flow graph to the timing model which 
computes the system state changes at cycle granularity and 
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keeps track of the elapsing clock cycles. The correctness 
proofs according to the theory of abstract interpretation 
have been conducted by Thesing [35]. The cache analysis 
presented by [10] is incorporated into the pipeline analysis. 
At each point where the actual hardware would query and 
update the contents of the cache(s), the abstract cache 
analysis is called, simulating a safe approximation of the 
cache effects. The result of the cache/pipeline analysis 
either is a worst-case execution time for every basic block, 
or a prediction graph that represents the evolution of the 
abstract system states at processor core clock granularity 
[7]. 

• The path analysis phase uses the results of the combined 
cache/pipeline analysis to compute the worst-case path of 
the analyzed code with respect to the execution timing. 
The execution time of the computed worst-case path is the 
worst-case execution time for the program. Within the aiT 
framework, different methods for computing this worst-
case path are available.  

aiT has been successfully employed in the avionics [12, 11, 31] 
and automotive [23] industries to determine precise bounds on 
execution times of safety-critical software. It is available for a 
variety of microprocessors ranging from simple processors like 
ARM7 to complex superscalar processors with timing 
anomalies and domino effects like Freescale MPC755, or 
MPC7448, and multicore processors like Infineon AURIX 
TC27x. 

IV. HYBRID WCET ANALYSIS 

Techniques to compute worst-case execution time 
information from measurements are either based on end-to-end 
measurements of tasks, or they construct a worst-case path 
from timing information obtained for a set of smaller code 
snippets in which the executable code of the task has been 
partitioned. With end-to-end timing measurements, timing 
information is only determined for one concrete input. As 
described above, due to caches and pipelines the timing 
behavior of an instruction depends on the program path 
executed before. Therefore, usually no full test coverage can be 
achieved and there is no safe test end criterion. Approaches that 
instrument the code to obtain timing information about the 
code snippets of a task modify the code which can significantly 
change the cache and pipeline behavior (probe effect): the 
times measured for the instrumented software do not 
necessarily correspond to the timing behavior of the original 
software. 

The solution which is implemented in the hybrid WCET 
analysis tool TimeWeaver [2] combines static context-sensitive 
path analysis with non-intrusive real-time instruction-level 
tracing to provide worst-case execution time estimates. By its 
nature, an analysis using measurements to derive timing 
information is aware of timing interference due to concurrent 
execution and multicore resource conflicts, because the effects 
of asynchronous events (e.g. activity of other running cores or 
DRAM refreshes) are directly visible in the measurements. The 
probe effect is completely avoided since no code 
instrumentation is needed. The computed estimates are safe 
upper bounds with respect to the given input traces, i.e., 
TimeWeaver derives an overall upper timing bound from the 

execution time observed in the given traces. Thus, the coverage 
of the input traces on the analyzed code is an important metric 
that influences the quality of the computed WCET estimates. 

The trace information needed for running TimeWeaver is 
provided out-of-the-box by embedded trace units of modern 
processors, like NEXUS IEEE-ISTO 5001™ [16] or ARM 

CoreSight™ [3]. They allow the fine-grained observation of a 

program execution on single-core and multicore systems. 
Examples for processors supporting the NEXUS trace interface 
are the NXP QorIQ P- and T-series processors (using either an 
e500mc or an e5500/e6500 core).  

A. NEXUS Traces 

On the PowerPC architecture TimeWeaver relies on 
NEXUS program flow trace messages. Such traces consist of 
trace segments separated by trace events. TimeWeaver maps 
the events to points in the control-flow graph (trace points) and 
the segments to program paths between these points. This is 
done for those parts of the trace that reach from the call of the 
routine used as analysis entry till the end of that routine or any 
other feasible end of execution. Such parts are called trace 
snippets. A single trace may contain several trace snippets. 
TimeWeaver can operate on one or more traces given as trace 
files, each containing one or more trace snippets. 

A NEXUS trace event encodes its type, a time stamp 
containing the elapsed CPU cycles since the last trace event 
and the contents of the branch history buffer, which can be 
used to reconstruct execution path decisions and allows to map 
trace segments to the control-flow graph of the corresponding 
executable. 

Microprocessor debugging solutions like the Lauterbach 
PowerDebug Pro [20] allow to record NEXUS trace events as 
they are emitted during program execution and to export them 
in various formats. TimeWeaver can process those exports for 
its timing analysis as described below.  

Here is a sample NEXUS trace excerpt (with some 
information removed) in ASCII format: 

+056 TCODE=1D PT-IBHSM F-ADDR=F1F4 HIST=2 TS=8847 

+064 TCODE=21 PT-PTCM EVCODE=A TS=88F1 

+072 TCODE=1C PT-IBHM U-ADDR=03DC HIST=1 TS=8D62 

+080 TCODE=21 PT-PTCM EVCODE=A TS=8E2F 

+088 TCODE=21 PT-PTCM EVCODE=A TS=8FBA 

+096 TCODE=21 PT-PTCM EVCODE=A TS=9105 

+104 TCODE=1C PT-IBHM U-ADDR=02CC HIST=1 TS=9275 

+112 TCODE=1C PT-IBHM U-ADDR=01F0 HIST=1 TS=93BF 

+120 TCODE=21 PT-PTCM EVCODE=A TS=997B 

+128 TCODE=1C PT-IBHM U-ADDR=0044 HIST=1 TS=9B02 

+136 TCODE=21 PT-PTCM EVCODE=A TS=9F21 

This output has been generated using the following 
command in the Lauterbach Trace32 tool: 
Trace.export.ascii <file> nexus /showRecord 

Each line corresponds to a trace event. The number at the 
beginning of the line is the trace record number. The second 
and third column represent the particular trace event type 
followed by type-specific information like branch history and 
program address information associated with the event. The TS 

number at the end is a time stamp. 



Debugging solutions differ in the format in which they 
export trace data. Some debuggers allow the user to configure 
the output. TimeWeaver can currently import traces which 
have been exported by Lauterbach, PLS or iSYSTEM 
debuggers. Whenever the format is configurable, we have 
identified a minimal set of information needed to perform the 
TimeWeaver analysis. Additionally, TimeWeaver can be easily 
extended to support other trace formats.  

B. TimeWeaver Toolchain 

The main inputs for TimeWeaver are the fully linked 
executable(s), timed traces and the location of the analyzed 
code in the memory (entry point, which usually is the name of 
a task or function). Optionally, users can specify further 
semantical information to the analysis, like targets of computed 
calls, loop bounds, values of registers and memory cells. This 
information is used to fine-tune the analysis. The analysis 
proceeds in several stages: decoding, loop/value analysis, trace 
analysis, and path analysis. Most steps in this tool chain are 
shared with aiT, leveraging its powerful static analysis 
framework.  

The decoding phase of TimeWeaver is mostly identical to 
the decoding phase of aiT. One important difference is that 
when encountering call targets which cannot be statically 
resolved, TimeWeaver can be instructed to extract the targets 
of unresolved branches or calls from the input traces. To this 
end there is a feedback loop between the CFG reconstruction 
and the trace analysis step (cf. Fig. 1). As an alternative, the 
same user annotations can be used as in the aiT tool chain. 

In the next phase, several microarchitectural analyses are 
performed on the reconstructed CFG starting with the 
combined loop and value analysis, again equal to the aiT tool 
chain. It determines possible values of registers and memory 
cells, addresses of memory accesses, as well as loop and 
recursion bounds. Based on this, statically infeasible paths are 
computed, i.e., parts of the program that cannot be reached by 
any execution under the given configuration. This is important 
because each detected infeasible path increases the trace 
coverage. Such paths are pruned from further analysis. If the 
value analysis cannot compute a loop bound or if the computed 
bound is not precise enough, users can specify custom bounds 
by means of annotations which are used by the analysis. The 
loop transformation allows loops in the CFG to be handled as 
self-recursive routines to improves analysis precision [32]. 

After value analysis, the analyzer has annotated each 
instruction in the control-flow graph with context-sensitive 
analysis results. This context-sensitivity is important because 
the precision of an analysis can be improved significantly if the 
execution environment is considered [32]. For example, if a 
routine is called with different register values from two 
different program points, the execution time in both situations 
might be different. Depending on the context settings, this is 
taken into account leading to higher precision in the analysis 
result. 

 

 

Fig. 1. TimeWeaver tool chain structure 

In the trace analysis step the given traces are analyzed such 
that each trace event is mapped to a program point in the 
control-flow graph. This mapping defines the trace points and 
segments mentioned above and is not only necessary for the 
whole analysis but also ensures that the input trace matches the 
analyzed binary. In case a preemptive system has been traced, 
interrupts are detected and reported. The extracted timing 
information, i.e., the clock cycles which have been elapsed 
between two consecutive trace points are annotated to the CFG 
in a context-sensitive manner. 

After the trace conversion, a CFG which combines the 
results of value analysis and traced execution timings (both 
context-sensitive) is available. This graph is the input for the 
next step, the path analysis phase. Here, the trace segment 
times alongside the control-flow graph are used to generate an 
integer linear program (ILP) formulation to compute the worst-
case execution path with respect to the traced timings. At this 
point, the recorded times for each pair of trace segment and 
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analysis context, get maximized. The ILP formulation is 
structurally the same as in the path analysis of aiT [33] with the 
exception that the involved execution times are not computed 
by a micro-architectural pipeline analysis but are extracted 
from the input traces. The generated ILP is fed to a solver 
whose solution is the worst-case execution path alongside its 
costs, i.e., the WCET estimate of the analyzed task. This 
solution is annotated to the CFG for the final step, namely 
reporting and visualization. 

As mentioned above, the input traces might contain 
asynchronous events like DRAM refreshes which can lead to 
exceptionally high trace segment times. TimeWeaver allows to 
address these with a filter for trace segment times based on 
their cumulative frequency (CF), i.e. their occurrence 
percentage. The threshold refers to a percentage of occurrences 
ordered by execution times (as in the survival graph, see 
below). A threshold of 0% is passed by all occurrences. A 
threshold of 5% is passed by all but the 4 most expensive ones 
(in terms of execution time) if there are 100 occurrences, by all 
but the 9 most expensive ones if there are 200 occurrences, etc. 
Trace segment times that do not pass the specified threshold 
are ignored in the ILP generation. The filter function is applied 
for each trace segment separately. TimeWeaver also allows to 
simulate the effect of the CF filter in its statistics view to 
experiment with different filter values. 

C. TimeWeaver Result Reporting and Visualization 

Besides the global WCET estimate and the execution path 
triggering it, TimeWeaver offers a variety of reporting 
facilities: 

• WCET estimate per routine (including cumulative 
information of called sub routines), 

• Context-specific WCET estimate per routine (including 
cumulative information of called sub routines), 

• Determined loop bounds (distinguishes between traced, 
analyzed, and effective bounds) including loop scaling 
conflicts, 

• Variance of trace segment times (context-sensitive), 

• Trace coverage with respect to the number of basic 
blocks and instructions in the analyzed code, and 

• Memory access information along the computed worst-
case path. 

In addition to the above described statistics, TimeWeaver 
provides the following visualizations: 

• Analysis result graph to interactively explore the results, 

• Per trace segment distribution graph for the recorded 
segment times (cf. Fig. 2), and a 

• Per trace segment survival graph to show the 
cumulative frequency of the recorded segment times 
(cf. Fig. 3). 

 

Fig. 2. Sample distribution graph of a trace segment 

 

Fig. 3 Sample survival graph of a trace segment 

D. WCET Estimate Extrapolation 

As mentioned above, TimeWeaver computes the global 
WCET estimate based on the observed execution times of trace 
segments. The times are maximized per trace segment and the 
maximized times are composed to identify the worst-case path 
with respect to those figures. 

Where in general, one would need to measure all possible 
execution paths (which is impractical on real-world 
applications) of the analyzed program for coverage reasons, 
TimeWeaver allows to compute an upper bound on the global 
execution time of the analyzed program based on the trace 
segment times extracted from the input traces.  

This way, it is only necessary to trace all possible execution 
paths between two consecutive trace points. By inserting 
custom trace points, the user can further decrease the required 
number of measurements. Fig. 4 illustrates this by showing 
three consecutive trace points (TP1, TP2, and TP3) and the 
possible execution paths between each of them. TimeWeaver 
composes the WCET estimate for the time between TP1 and 
TP3 by the sum over the maximized trace segment time 
between TP1→TP2 and the maximized trace segment time 
between TP2→TP3. Thus, the measurements need to cover the 
four execution paths between TP1→TP2 as well as between 
three execution paths between TP2→TP3. Without that time 
composition, all 12 execution paths between TP1→TP3 need 
to be measured. 

E. Loop Scaling 

For loops, there might be a gap between the maximum of 
the observed iteration counts in the input traces (traced bound) 
and the statically possible maximum iteration count (analyzed 
bound) which is computed by the value analysis. The bound 



actually used for the ILP generation is the so-called effective 
bound which is the analyzed bound if it is finite and applicable 
(cf. scaling conflicts below) and otherwise the traced bound. 
Per user request, the intersection of analyzed and traced bound 
is used. 

If the effective bound is higher than the traced bound, the 
maximum observed execution time (context-sensitively) for 
one loop iteration is scaled up to the effective bound. This 
overcomes the necessity to trace each loop in the analyzed task 
with its worst-case iteration count, which might be hard to 
achieve because loop conditions often are data-dependent and 
thus can be complex to trigger. 

However, loop scaling as described above is not always 
directly applicable. It requires each trace to pass a trace point 
inside the loop body. If there is at least one traced execution 
path through the loop body without a trace point, scaling 
cannot be done and only the traced bounds are used for this 
loop. Such a situation is called an event loop scaling conflict. 
The solution is to either trace the worst-case loop iteration 
count or to ensure that each traced path through the loop body 
passes a trace point (by inserting custom trace points). 

There is another situation which triggers a loop scaling 
conflict: if due to the context settings of the analysis a loop is 
virtually unrolled more times than the corresponding loop body 
has been executed in the trace, scaling cannot be applied, as 
well. The reason is that the scaling is applied in the last loop 
context, i.e., in that context which represents the last loop 
iteration(s). In that case, there is no traced loop body time in 
the trace mapped to this context which prevents scaling. Such a 
conflict is called a unroll loop scaling conflict. To solve this 
conflict, one can either trace the worst-case iteration count of 
the corresponding loop or the (virtual) loop unroll during 
analysis of this particular loop can be decreased to the traced 
bound. 

 

Fig. 4 Execution paths between trace points 

V. EXPERIMENTAL RESULTS ON TIMEWEAVER  

To evaluate TimeWeaver for PowerPC, we recorded 
program executions on an NXP T1040 [25] evaluation board 
using a Lauterbach PowerDebug Pro JTAG debugger.  

A. Loop scaling 

Execution times for loops can be scaled up from the 
maximum observed execution time of the loop body. This can 
be seen in the analysis of the following program: 

 1 volatile int sensor; 

 2 

 3 int helper (int x) 

 4 { 

 5   int result = x; 

 6   result += sensor; 

 7   return result + 3; 

 8 } 

 9 

 10 

 11 int main (void) 

 12 { 

 13   int result = 0; 

 14 

 15   result += helper(256); 

 16 

 17   int i; 

 18   int loop_bound = (sensor-0xDEADBEEF)+5; 

 19 

 20   /* Loop with statically unknown bound */ 

 21   for (i=0 ; i<loop_bound ; ++i) { 

 22     result += 1024; 

 23     result += helper(128); 

 24   } 

 25 

 26   result += helper(256); 

 27 

 28   return result + 1; 

 29 } 

 

Before starting measurements, we stored the value 
0xDEADBEEF in the memory cell representing the variable 

sensor, so that the traced loop bound is 5 due to the 

assignment in line 18. However, the code has been written in a 
way that the static analysis cannot compute a finite loop bound 
for this loop because the value for sensor is not known 

statically. Without any user input, TimeWeaver uses the traced 
loop bounds in its analysis and computes a WCET estimate of 
8.5 µs. Analyzing again with a loop bound of 10 yields an 
estimate of 16.7 µs. This is expected as TimeWeaver now 
scales up the time for the loop body to 10 rounds. The WCET 
estimate does not precisely doubles because of the contribution 
of the surrounding code to the execution time. 

B. Precision 

To show the precision of the computed WCET estimates, 
we compared TimeWeaver results with the maximum end-to-
end times seen in those input traces we have fed to 
TimeWeaver. For comparison reasons, loop bounds in the 
analysis have been chosen equal to the traced loop bounds. The 
following table shows the results. 
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Application Trace [cycles] Estimate [cycles] Diff [%] 

crc 809068 829039 2.47 

edn 4788025 4791420 0.07 

eratosthenes sieve 368345 369803 0.40 

dhrystone 168093 177314 5.49 

md5 127857 131718 3.02 

nestedDepLoops 2747357 2747359 0.00 

sha 23426161 23815350 1.66 

Avionics Task 420677 498028 18.38 

Automotive Task 1 65058 71964 10.62 

Automotive Task 2 27215 28967 6.44 

Automotive Task 3 17386 18595 6.95 

Automotive Task 4 101749 109302 7.42 

Tab. 1. TimeWeaver Result Comparison 

For each application, the maximum observed end-to-end 
time has been extracted from the traces and compared with the 
WCET estimate computed by TimeWeaver. The difference 
represents the overestimation of TimeWeaver resulting from 
the composition of trace segment times to a global estimate. In 
average, the TimeWeaver results from the table above are 
5.24% above the maximum observed end-to-times from the 
traces. 

VIII. CONCLUSION 

In this article we have given a definition of timing 

predictability and discussed hardware features which increase 

the difficulty of obtaining safe and precise worst-case 

execution time bounds, both on single-core and multicore 

processors. We have described the methodology of static 

worst-case execution time analysis which can provide 

guaranteed WCET bounds on complex processors, if the 

timing behavior of the processor is well specified, and 

asynchronous interferences can be controlled or bounded. 

Hybrid worst-case execution time analysis allows to obtain 

worst-case execution time bounds even for systems where 

these conditions are not met. We have given an overview of 

the hybrid WCET analyzer TimeWeaver which combines 

static value and path analysis with timing measurements based 

on non-intrusive instruction-level real-time traces. The trace 

information covers interference effects, e.g., by accesses to 

shared resources from different cores, without being distorted 

by probe effects since no instrumentation code is needed. The 

analysis results include the computed WCET bound with the 

time-critical path, and information about the trace coverage 

obtained. They provide valuable feedback for optimizing trace 

coverage, for assessing system safety, and for optimizing 

worst-case performance. Experimental results show that with 

good trace coverage safe and precise WCET bounds can be 

efficiently computed. 
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