
StackAnalyzer

Proving the Absence of Stack Overflows

AbsInt GmbH

2012

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: tests and measurements

 Test end criteria unclear

 No full coverage possible

 ―Testing, in general, cannot show the absence of errors.‖ — DO-178B

 Access to physical hardware: high effort
due to limited availability and observability

2

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Stack Usage

 In safety-critical embedded

systems the stack is typically

the only dynamically managed

memory

 The stack is used to store

 Local variables

 Intermediate values

 Function parameters

 Function return addresses

3

End of reserved
stack space

Start of reserved
stack space

Stack frame
of current

function

Usable
stack
space

Stack pointer

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Static Analysis – an Overview

 General definition: results are only computed
from the program structure,
without executing the program under analysis

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug finders/bug hunters

 Cannot guarantee that all bugs are found

 Examples: Splint, Coverity CMC, Klocwork K7,…

 Sound semantics-based/abstract-interpretation–based

 Can guarantee that all bugs from the class under analysis are found

 Results valid for every possible program execution
with any possible input scenario

 Examples: aiT WCET Analyzer, StackAnalyzer, Astrée

4

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Abstract Interpretation

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency–precision
trade-off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by abstract interpretation.

 Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

5

Definitely
correct / in time definitely false

Definitely
correct / in time

potentially
false

Concrete
semantics

Abstract
semantics

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Aerospace: DO-178B/DO-178C

 ―Verification is not simply testing.
Testing, in general, cannot show the absence of errors.‖

 ―The general objectives of the software verification process
are to verify that the requirements of the system level,
the architecture level, the source code level and the executable
object code level are satisfied, and that the means used to satisfy
these objectives are technically correct and complete.‖

 The DO-178C is a revision of DO-178B to bring it up to date with respect
to current software development and verification technologies, e.g. the
use of formal methods to complement or replace dynamic testing:
theorem proving, model checking, abstract interpretation.

6

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

7

Criticality levels:

A (lowest) to

D (highest)

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

8

 Importance of static verification emphasized:

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Automotive: ISO-26262

9

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

10

Excerpt from:

IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable

electronic safety-related systems – Part 3: Software requirements

E&E Systems: IEC-61508 – Edition 2.0

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

11

Criticality levels:

SIL1 (lowest) to

SIL4 (highest)

Confidence levels:

R1 (lowest) to

R3 (highest)

E&E Systems: IEC-61508 – Edition 2.0

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Railway: prEN-50128

12

Excerpt from:

DRAFT prEN 50128,

July 2009

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

13

Industry Perspective

 In most current safety standards variants of static analysis are
recommended or highly recommended as a verification technique

 Abstract-interpretation–based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties

 Examples:

 Static WCET analysis (aiT)

 Static stack usage analysis (StackAnalyzer)

 Static runtime error analysis (Astrée): proving the absence of erroneous
pointer dereferencing, out-of-bounds array indices, arithmetic overflows,
division by zero,…

 aiT application examples:

 safety-critical Airbus software in many airplane types (A380,…)

 by NASA as an industry-standard tool for demonstrating
the absence of timing-related software defects in the
Toyota Unintended Acceleration Investigation (2010)*

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the

Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Stack Usage Analysis

 Stack space has to be reserved at configuration time

⇒ maximum stack usage has to be known

 Underestimating stack usage can cause stack overflows,

which are severe errors:

 can cause wrong reactions and program crashes

 hard to recognize

 hard to reproduce and fix

 Overestimating the stack usage means wasting resources

 StackAnalyzer calculates safe and precise upper bounds
of the maximum stack usage of the tasks in the system

14

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Testing is Difficult

 A traditional approach:

1. Fill the stack area with a pattern (0xAAAA)

2. Let the system run for a long time

3. Monitor the maximum stack usage so far

Expensive

Error-prone

Not safe!

 Typical stack usage of a task can be very different
from its maximum stack usage. Dynamic testing
typically cannot guarantee that the worst case
has been observed.

15

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer

 StackAnalyzer computes safe upper bounds of the stack usage
of the tasks in a program for all inputs

 Static program analysis based on abstract interpretation

16

instruction "_main" + 1 computed

calls "_fooA", "_fooB", "_fooC";

routine "_fib" incarnates max 5;

Optional annotations:
function pointers, recursion depths,…

Entry points

 Stack pointer

 Visualization

 Documentation

Executable (ELF, COFF,…)

à =€@€
aŒ† |
@€,@€;ÞKÿ
ÿô;ÿ
KÿÿØ‰•€2}Œ
`øÿÿ™•€(8H#
é³¡•¶•€(

StackAnalyzer

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Analyses Overview

17

Stack usage in bytes for

 Tasks

 Interrupt service routines

© 2012 AbsInt GmbH

Annotated Call Graph

18

Stack history from
entry point to the
selected routine

Stack usage of
a single function
(global and local)

Overall maximum
stack usage

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Global Stack Usage Analysis

 An RTOS might implement several stacks
to support preemption

 Each stack has to be considered separately

 Stacks might be shared

 Non-preemptive tasks of the same priority

 Interrupt service routines

19

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

One Stack

20

End of reserved stack space

Start of reserved stack space

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)

Usable stack space

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Maximum Stack Usage

21

Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)

+

+

+

+

+

+

+

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

ISRs + OSEK Tasks + Frames

22

OSEK frame

OSEK task

ISR frame

ISR

Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)

+

+

+

+

+

+

+

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Result Combination

23

 Formulate mathematical expressions

 Refer to analysis IDs

 Allows to compute
system stack usage automatically

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Qualification Support Kits

 Report Package
 Operational Requirements Report:

lists all functional requirements

 Verification Test Plan:
describes one or more
test cases to check each
functional requirement

 Test Package
 All test cases listed in the

Verification Test Plan report

 Scripts to execute
all test cases including an
evaluation of the results

24

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

StackAnalyzer Advantages

 Results are determined automatically

 Results are valid for all inputs and all execution scenarios

 No debug information required

 No modification of your code or tool chain required

 Inline assembly is taken into account

 Library functions are taken into account

 Calls via function pointers are taken into account

 Recursive calls are taken into account

 Can be used for stack optimization/software integration

 Successfully used for certification, e.g. according to DO-178B Level A

 Available for numerous processor/compiler combinations

25

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

Summary

 Current safety standards require demonstrating
that the software works correctly and the relevant safety goals
are met, including non-functional program properties.
In all of them, variants of static analysis are recommended
or highly recommended as a verification technique.

 Abstract-interpretation–based static analysis tools compute results
which hold for any possible program execution and any input
scenario. They are in wide industrial use and can be considered as
the state-of-the-art for validating non-functional safety properties.

 aiT Worst-Case Execution Time Analyzer

 StackAnalyzer for proving the absence of stack overflows

 Astrée for proving the absence of runtime errors

 These tools enhance system safety
and can contribute to reducing the V&V effort.

26

© 2012 AbsInt GmbH© 2012 AbsInt GmbH

27

info@absint.com

www.absint.com

