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Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (division by zero, 
invalid pointer accesses, overflow and rounding errors)

 Resource usage

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: tests and measurements

 Test end criteria unclear

 No full coverage possible 

 ―Testing, in general, cannot show the absence of errors.‖ — DO-178B

 Access to physical hardware: high effort 
due to limited availability and observability
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Stack Usage

 In safety-critical embedded 

systems the stack is typically 

the only dynamically managed 

memory

 The stack is used to store

 Local variables

 Intermediate values

 Function parameters

 Function return addresses
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Static Analysis – an Overview

 General definition: results are only computed 
from the program structure, 
without executing the program under analysis

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug finders/bug hunters

 Cannot guarantee that all bugs are found

 Examples: Splint, Coverity CMC, Klocwork K7,…

 Sound semantics-based/abstract-interpretation–based

 Can guarantee that all bugs from the class under analysis are found

 Results valid for every possible program execution
with any possible input scenario

 Examples: aiT WCET Analyzer, StackAnalyzer, Astrée
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Abstract Interpretation

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics 
where program properties are decidable (efficiency–precision 
trade-off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow 
information it produces is guaranteed to be true for every possible 
program execution. Formally provable by abstract interpretation.

 Safety: Computation of safe overapproximation of program semantics: 
some precision may be lost, but imprecision is always on the safe side.
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Aerospace: DO-178B/DO-178C

 ―Verification is not simply testing. 
Testing, in general, cannot show the absence of errors.‖

 ―The general objectives of the software verification process 
are to verify that the requirements of the system level, 
the architecture level, the source code level and the executable 
object code level are satisfied, and that the means used to satisfy 
these objectives are technically correct and complete.‖

 The DO-178C is a revision of DO-178B to bring it up to date with respect 
to current software development and verification technologies, e.g. the 
use of formal methods to complement or replace dynamic testing: 
theorem proving, model checking, abstract interpretation.
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Automotive: ISO-26262
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Criticality levels: 

A (lowest) to

D (highest)

Excerpt from: 

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level. 

Version ISO/FDIS 26262-6:2011(E), 2011. 
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Automotive: ISO-26262
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 Importance of static verification emphasized:

Excerpt from: 

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level. 

Version ISO/FDIS 26262-6:2011(E), 2011. 
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Automotive: ISO-26262
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Excerpt from: 

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level. 

Version ISO/FDIS 26262-6:2011(E), 2011. 
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Excerpt from: 

IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable 

electronic safety-related systems – Part 3: Software requirements

E&E Systems: IEC-61508 – Edition 2.0
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Criticality levels: 

SIL1 (lowest) to

SIL4 (highest)

Confidence levels: 

R1 (lowest) to

R3 (highest)

E&E Systems: IEC-61508 – Edition 2.0
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Railway: prEN-50128
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Excerpt from: 

DRAFT prEN 50128, 

July 2009
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Industry Perspective

 In most current safety standards variants of static analysis are 
recommended or highly recommended as a verification technique

 Abstract-interpretation–based static analyzers are in wide industrial 
use: state-of-the-art for validating non-functional safety properties

 Examples:

 Static WCET analysis (aiT)

 Static stack usage analysis (StackAnalyzer)

 Static runtime error analysis (Astrée): proving the absence of erroneous 
pointer dereferencing, out-of-bounds array indices, arithmetic overflows, 
division by zero,…

 aiT application examples:

 safety-critical Airbus software in many airplane types (A380,…)

 by NASA as an industry-standard tool for demonstrating 
the absence of timing-related software defects in the 
Toyota Unintended Acceleration Investigation (2010)*

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the 

Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.
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Stack Usage Analysis

 Stack space has to be reserved at configuration time 

⇒ maximum stack usage has to be known

 Underestimating stack usage can cause stack overflows,

which are severe errors:

 can cause wrong reactions and program crashes

 hard to recognize

 hard to reproduce and fix

 Overestimating the stack usage means wasting resources 

 StackAnalyzer calculates safe and precise upper bounds
of the maximum stack usage of the tasks in the system
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Testing is Difficult

 A traditional approach:

1. Fill the stack area with a pattern (0xAAAA)

2. Let the system run for a long time

3. Monitor the maximum stack usage so far

Expensive

Error-prone

Not safe!

 Typical stack usage of a task can be very different 
from its maximum stack usage. Dynamic testing 
typically cannot guarantee that the worst case 
has been observed.
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StackAnalyzer

 StackAnalyzer computes safe upper bounds of the stack usage
of the tasks in a program for all inputs

 Static program analysis based on abstract interpretation
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instruction "_main" + 1 computed

calls "_fooA", "_fooB", "_fooC";

routine "_fib" incarnates max 5;

Optional annotations: 
function pointers, recursion depths,…

Entry points

 Stack pointer

 Visualization

 Documentation

Executable (ELF, COFF,…)
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StackAnalyzer Analyses Overview
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Stack usage in bytes for

 Tasks

 Interrupt service routines
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Annotated Call Graph
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Stack history from
entry point to the
selected routine

Stack usage of
a single function
(global and local)

Overall maximum
stack usage
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Global Stack Usage Analysis

 An RTOS might implement several stacks 
to support preemption

 Each stack has to be considered separately

 Stacks might be shared

 Non-preemptive tasks of the same priority

 Interrupt service routines
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One Stack
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End of reserved stack space

Start of reserved stack space

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)

Usable stack space
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Maximum Stack Usage
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Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)

Stack cells used by lowest priority task/ISR

Context including return address

Stack cells used by second lowest priority task/ISR

Task context including return address

Context including return address

Stack cells used by highest priority task/ISR

OS overhead, initialization (possibly empty)
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ISRs + OSEK Tasks + Frames
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OSEK frame

OSEK task

ISR frame

ISR

Max(StackAnalyzer(lowest_priority_tasks))

Sizeof(corresponding context frame)

Max(StackAnalyzer(second_lowest_priority_tasks))

Sizeof(corresponding context frame)

Sizeof(corresponding context frame)

Max(StackAnalyzer(highest_priority_tasks))

Sizeof(initialization frame)
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+

+

+

+

+
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StackAnalyzer Result Combination
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 Formulate mathematical expressions

 Refer to analysis IDs

 Allows to compute
system stack usage automatically
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Qualification Support Kits

 Report Package
 Operational Requirements Report: 

lists all functional requirements 

 Verification Test Plan: 
describes one or more 
test cases to check each 
functional requirement

 Test Package
 All test cases listed in the 

Verification Test Plan report

 Scripts to execute 
all test cases including an 
evaluation of the results 
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StackAnalyzer Advantages

 Results are determined automatically

 Results are valid for all inputs and all execution scenarios

 No debug information required

 No modification of your code or tool chain required

 Inline assembly is taken into account

 Library functions are taken into account

 Calls via function pointers are taken into account

 Recursive calls are taken into account

 Can be used for stack optimization/software integration

 Successfully used for certification, e.g. according to DO-178B Level A

 Available for numerous processor/compiler combinations
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Summary

 Current safety standards require demonstrating 
that the software works correctly and the relevant safety goals
are met, including non-functional program properties. 
In all of them, variants of static analysis are recommended
or highly recommended as a verification technique.

 Abstract-interpretation–based static analysis tools compute results 
which hold for any possible program execution and any input 
scenario. They are in wide industrial use and can be considered as 
the state-of-the-art for validating non-functional safety properties.

 aiT Worst-Case Execution Time Analyzer

 StackAnalyzer for proving the absence of stack overflows

 Astrée for proving the absence of runtime errors

 These tools enhance system safety 
and can contribute to reducing the V&V effort.
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info@absint.com

www.absint.com


